Выбрать главу

Предположим теперь, что кристалл возмущен однородной деформацией, описываемой тензором eij. В общем случае у него будут компоненты, содержащие х, у и z, но мы для большей наглядности рассмотрим только деформации с тремя компонентами: ехх, еxy и еyy. Если один из атомов выбрать в качестве начала координат, то перемещение любого другого атома задается уравнением типа (39.9):

(39.42)

Назовем атом с координатами х=у=0 «атомом 1», а номера его соседей показаны на фиг. 39.11.

Фиг, 39.11. Перемещение ближайших и следующих поблизости соседей атома 1. (Масштаб сильно искажен.)

Обозначая постоянную решетки через а, мы получаем х- и y-компоненты перемещения ux, uy, выписанные в табл. 39.1.

Таблица 39.1. КОМПОНЕНТЫ ПЕРЕМЕЩЕНИЯ ux, uу

Теперь можно вычислить энергию, запасенную в пружинках, которая равна произведению k2/2 на квадрат растяжения каждой пружинки. Так, энергия горизонтальной пружинки между атомами 1 и 2 будет равна

(39.43)

Заметьте, что с точностью до первого порядка y-перемещение атома 2 не изменяет длины пружинки между атомами 1 и 2. Однако, чтобы получить энергию деформации диагональной пружинки, той, что идет к атому 3, нам нужно вычислить изменение длины как из-за вертикального, так и из-за горизонтального перемещений. Для малых отклонений от начала координат куба изменение расстояния до атома 3 можно записать в виде суммы компонент uх и uv в диагональном направлении:

Воспользовавшись величинами uх и uy. можно получить выражение для энергии

(39.44)

Для полной энергии всех пружинок в плоскости ху нам нужна сумма восьми членов типа (39.43) и (39.44). Обозначая эту энергию через U0, получаем

(39.45)

Чтобы найти полную энергию всех пружинок, связанных с атомом 1, мы должны сделать некую добавку к уравнению (39.45). Хотя нам нужны только х- и y-компоненты деформации, вклад в них дает еще некоторая добавочная энергия, связанная с диагональными соседями вне плоскости ху. Эта добавочная энергия равна

(39.46)

Упругие постоянные связаны с плотностью энергии w уравнением (39.13). Энергия, которую мы вычислили, связана с одним атомом, точнее это удвоенная энергия, приходящаяся на один атом, ибо на каждый из двух атомов, соединенных пружинкой, должно приходиться по 1/2 ее энергии. Поскольку в единице объема находится 1/a3 атомов, то w и U0 связаны соотношением

Чтобы найти упругие постоянные Cijkl, нужно только возвести в квадрат суммы в скобках в уравнении (39.45), прибавить (39.46) и сравнить коэффициенты при еijеkl с соответствующими коэффициентами в уравнении (39.13). Например, собирая слагаемые с е2xx и е2yy, мы находим, что множитель при нем равен

поэтому

В остальных слагаемых нам встретится небольшое усложнение. Поскольку мы не можем отличить произведения еххеyy от еyyехх, то коэффициент при нем в выражении для энергии равен сумме двух членов в уравнении (39.13). Коэффициент при еххеyy в уравнении (39.45) равен 2k2, так что получаем

Однако из-за симметрии выражения для энергии при перестановке двух первых значений с двумя последними можно считать, что Скхуу=Суухх, поэтому

Таким же способом можно получить