Давление в жидкости может изменяться от точки к точке. Так, в неподвижной жидкости на поверхности Земли давление будет изменяться с высотой из-за веса жидкости. Если плотность жидкости ρ считается постоянной и давление на некотором нулевом уровне обозначено через р0 (фиг. 40.2), то давление на высоте h над этой точкой будет р=р0 -ρgh, где g — сила тяжести единицы массы.
Фиг. 40.2. Давление в неподвижной жидкости.
Комбинация р+ρgh в неподвижной жидкости остается постоянной. Вы знаете это соотношение, но теперь мы получим более общий результат, где наше соотношение будет лишь частным случаем. Возьмем маленький кубик воды. Какая сила действует на него в результате оказываемого давления? Поскольку давление в любом месте во всех направлениях одинаково, то полная сила, действующая на единицу объема, может быть обусловлена только изменением давления от точки к точке. Предположим, что давление изменяется в направлении оси х, и выберем направления других осей координат параллельно ребрам кубика. Давление на грань с координатой х дает силу pΔyΔz (фиг. 40.3), а давление на грань с координатой х+Δх дает силу—[р+(∂р/∂х) Δх] ΔyΔz, так что результирующая сила равна -(∂р/∂х)ΔxΔyΔz.
Фиг. 40.3. Полная сила давления, действующая на куб, составляет -∇p на единицу объема.
Если же мы учтем остальные пары граней куба, то нетрудно убедиться, что сила давления на единичный объем равна -∇p. Если вдобавок есть еще и другие силы, наподобие силы тяжести, то давление при равновесии должно компенсироваться ими.
Разберем случай, когда такие дополнительные силы можно описать потенциальной энергией, наподобие силы тяжести. Обозначим через φ потенциальную энергию единицы массы. (Для притяжения, например, φ просто равно gz.) Сила, действующая на единичную массу, задаётся через потенциал φ выражением -∇φ, а если плотность жидкости равна ρ, то на единицу объема будет действовать сила -ρ∇φ. В состоянии равновесия эта действующая на единичный объем сила в сумме с силой давления должна давать нуль:
(40.1)
Это и есть уравнение гидростатики. В общем случае оно не имеет решения. Если плотность изменяется в пространстве каким-то произвольным образом, то нет возможности уравновесить все силы и жидкость не может находиться в состоянии статического равновесия. В ней возникнут разные конвекционные потоки. Это видно прямо из уравнения, ибо член с давлением представляет чистый градиент, тогда как второй член из-за плотности ρ не может быть им. И только когда величина ρ постоянна, потенциальный член становится чистым градиентом.
Решение уравнения в этом случае имеет вид
Другая возможность, допускающая состояние равновесия, — это когда ρ зависит только от р. Однако на этом мы расстанемся с гидростатикой, ибо она не так интересна, как движущаяся жидкость.
§ 2. Уравнение движения
Сначала обсудим движение жидкости с чисто абстрактной теоретической стороны, а затем рассмотрим некоторые частные примеры. Чтобы описать движение жидкости, мы должны задать в каждой точке ее некие свойства. Например, вода (будем называть жидкость просто «водой») в разных местах движется с различными скоростями. Следовательно, чтобы определить характер потока, мы должны в каждой точке и в любой момент времени задать три компоненты скорости. Если нам удастся найти уравнения, определяющие скорость, то мы будем знать, как в любой момент движется жидкость. Но скорость — не единственная характеристика жидкости, которая меняется от точки к точке. Только что мы изучали изменение давления от точки к точке. А есть еще и другие переменные. От точки к точке может меняться также плотность. Вдобавок жидкость может быть проводником и переносить электрический ток, плотность которого j изменяется от точки к точке как по величине, так и по направлению. От точки к точке может меняться температура, магнитное поле и т. д. Так что число полей, необходимых для полного описания ситуации, зависит от сложности задачи. Очень интересные явления возникают, когда доминирующую роль в определении поведения жидкости играют токи и магнетизм. Эта наука носит название магнитогидродинамика. В настоящее время ей уделяется очень большое внимание. Но мы не собираемся рассматривать эти весьма сложные случаи, ибо имеется немало менее сложных, но столь же интересных явлений, и даже этот более элементарный уровень будет достаточно труден.