Возьмем случай, когда нет ни магнитного поля, ни проводимости и нам, кроме того, не следует беспокоиться о температурах, ибо мы предположим, что температура в любой точке единственным образом определяется плотностью и давлением. Фактически мы уменьшим сложность нашей работы, допустив, что плотность постоянна, т. е. что жидкость существенно несжижаема. Другими словами, мы предполагаем, что изменения давлений настолько малы, что производимыми ими изменениями плотности можно пренебречь. Если бы это было не так, то в дополнение к явлениям, рассмотренным здесь, необходимо было бы учитывать и другие явления, скажем распространение звуковых или ударных волн. Распространение звуковых и ударных волн мы уже в какой-то степени изучали, так что при нашем рассмотрении гидродинамики мы изолируемся от этих явлений, допустив, что приближенно плотность ρ постоянная. Легко определить, когда такое предположение о постоянстве ρ будет хорошим. Если скорость потока гораздо меньше скорости звуковой волны, то нам не нужно заботиться об изменениях плотности. Тот факт, что вода ускользает от нас при попытке понять ее, не связан с этим приближением постоянной плотности. Усложнения, которые все-таки позволили ей остаться непонятой, мы обсудим в следующей главе.
Общую теорию жидкостей мы должны начать с уравнения состояния жидкости, связывающего давление и плотность; в нашем приближении оно имеет очень простой вид:
Это и есть первое уравнение для наших переменных. Следующее соотношение выражает сохранение вещества. Когда вещество утекает из какой-то точки, то количество его в этой точке должно уменьшаться. Если скорость жидкости равна v, то масса, которая протекает за единичное время через единицу площади поверхности, равна нормальной к поверхности компоненте ρv. Подобное соотношение у нас получалось уже в теории упругости. Из знакомства с электричеством мы знаем также, что дивергенция такой величины определяется скоростью уменьшения плотности. Также и здесь уравнение
(40.2)
выражает сохранение массы жидкости: это гидродинамическое уравнение непрерывности. В нашем приближении, т. е. в приближении несжимаемой жидкости, плотность ρ постоянна и уравнение непрерывности превращается просто в
(40.3)
Дивергенция скорости жидкости v, как и магнитного поля В, равна нулю. (Гидродинамические уравнения очень часто оказываются аналогичными уравнениям электродинамики; вот почему мы сначала изучали электродинамику. Некоторые предпочитают другой путь, считая, что сначала следует изучать гидродинамику, чтобы потом было легче понять электричество. На самом же деле электродинамика гораздо проще, чем гидродинамика.)
Следующее уравнение мы получим из закона Ньютона; оно говорит нам, как происходит изменение скорости в результате действия сил. Произведение массы элемента объема жидкости на ускорение должно быть равно силам, действующим на этот элемент. Выбирая в качестве элемента объема единичный объем и обозначая силу, действующую на единичный объем, через f, получаем
Плотность сил можно записать в виде суммы трех слагаемых. Одно из них, силу давления на единицу объема — (∇p), мы уже рассматривали. Но есть еще действующие на расстоянии «внешние» силы, подобные тяжести или электричеству. Если эти силы консервативные с потенциалом, отнесенным к единице массы, равным φ, то они приводят к плотности сил —ρ(∇φ). (Если же внешние силы не консервативные, то мы вынуждены писать внешнюю силу, приходящуюся на единицу объема, как fвнешн.) Кроме нее, на единицу объема действует еще одна «внутренняя» сила, которая возникает из-за того, что в текущей жидкости могут действовать сдвиговые силы. Они называются силами вязкости, и мы будем обозначать их через fвязк. Тогда наше уравнение движения приобретает вид
(40.4)
В этой главе мы будем предполагать, что наша вода «жидкая» в том смысле, что ее вязкость несущественна, так что слагаемое fвязк будет опускаться. Выбрасывая слагаемое с вязкостью, мы делаем приближение, которое описывает некое идеальное вещество, а не реальную воду. Об огромной разнице, возникающей в зависимости от того, оставляем ли мы слагаемое с вязкостью или нет, в свое время хорошо знал Джон фон Нейманн. Известно ему было и то, что во времена наибольшего расцвета гидродинамики, т. е. примерно до 1900 г., основные усилия были направлены на решение красивых математических задач в рамках именно этого приближения, которое ничего не имеет общего с реальными жидкостями. Поэтому теоретиков, которые занимались подобными веществами, он называл людьми, изучающими «сухую воду». Они отбрасывали важнейшее свойство жидкости. Именно потому, что в этой главе мы при наших вычислениях тоже этим свойством будем пренебрегать, я озаглавил ее «Течение «сухой» воды». А обсуждение настоящей, «мокрой» воды мы отложим до следующей главы.