Выбрать главу

Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно ∂v/∂t. Но это совсем неверно, и по довольно хитрой причине. Производная ∂v/∂t выражает изменение скорости v(х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени Δt эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Δt она из точки Р1 переместится в точку Р2.

Фиг. 40.4. Ускорение частицы жидкости.

Фактически в направлении оси х она передвинется на расстояние vxΔt, в направлении оси у — на расстояние vуΔt, а в направлении оси z — на расстояние vzΔt. Мы видим, что если v(х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент tt представляет величину v (х+Δx, уy, z+Δz, tt), причем

Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем

Ускорение же Δvt будет равно

Считая вектором, это можно записать символически:

(40.5)

Обратите внимание, что, даже когда ∂v/∂t=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.

Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.

(40.6)

где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:

Если определить новое векторное поле Ω как ротор скорости v, т. е.

(40.7)

то векторное тождество можно записать так:

а наше уравнение движения (40.6) примет вид

(40.8)

Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, воспользовавшись при этом выражением (40.7).

Если Ω всюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в данный момент времени вокруг этой петли:

Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна ×v. Таким образом, Ω представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению Ω). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью Ω/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике Ω равна удвоенной локальной угловой скорости воды.