Это же справедливо и для конъюнкции «и»: для ее обозначения существует символ , однако он является избыточным, так как его можно заменить символами V и ¬. Чтобы доказать это, рассмотрим три операции теории множеств: дополнение, объединение и пересечение.
Для данного множества А, которое содержится в другом множестве В, дополнением множества А до В называют множество, состоящее из элементов, принадлежащих В, но не А. Например, дополнением множества гласных {а, е, i, о, и} английского алфавита является множество согласных. Рассмотрим операции объединения и пересечения. Для данных множеств X и Y их пересечение X Y определяется как множество элементов, одновременно принадлежащих X и Y. Например, если X — множество четных чисел 0, 2, 4, 6, 8, 10…, а Y — множество чисел, кратных трем, 0, 3, 6, 9, 12, 15 …, то чтобы найти их пересечение, нужно определить их общие элементы: ими будут 0, 6, 12, 18…, то есть числа, кратные шести. Объединением множеств X U Y называется множество, которому принадлежат все элементы X и все элементы Y. В предыдущем примере первыми элементами объединения X и Y будут 0, 2, 3, 4, 6, 8, 9…
Похожесть символов, обозначающих пересечение двух множеств () и конъюнкцию двух высказываний (), а также символов, обозначающих объединение двух множеств (U) и дизъюнкцию двух высказываний (V), вовсе не случайна. Если сопоставить свойствам Р и Q множества чисел, обладающих этими свойствами, например X и Y, то числа, обладающие свойствами Р и Q одновременно, будут элементами пересечения множеств X Y, а числа, обладающие свойством Р или Q, то есть как минимум одним из этих двух свойств, будут принадлежать объединению множеств X U Y. Дополнение множества, в свою очередь, соответствует отрицанию высказывания. Для представления дополнений, объединений и пересечений множеств очень удобно использовать диаграммы, созданные британским математиком и философом Джоном Венном в 1880 году. С их помощью можно доказать, что конъюнкция свойств Р и Q равносильна отрицанию дизъюнкции отрицаний Р и Q, иными словами, Р Q = ¬(¬Р V ¬Q). Это свойство позволяет выразить через V и ¬.
Рис. 1. Пересечение двух множеств, соответствующее конъюнкции P Q.
Рис. 2. Объединение двух множеств, соответствующее дизъюнкции Р V Q.
Рис. 3. Дополнение множества, соответствующее отрицанию ¬Р.
Диаграммы Венна, на которых представлены операции пересечения (рис. 1), объединения (рис. 2) и дополнения (рис. 3) множеств.
Сделав замечание о том, как представляются выражение «для всех» и конъюнкция высказываний (логическое «и»), рассмотрим, как переводятся в формальную систему арифметики некоторые аксиомы Пеано. Первая аксиома Пеано звучит так: «Ноль есть натуральное число». Эта аксиома не требует перевода, так как мы включили символ 0 в созданный нами язык. Перейдем ко второй аксиоме: «Каждое натуральное число имеет число, следующее за ним». В этой аксиоме фигурируют две переменные: рассматриваемое натуральное число, которое мы будем обозначать через х, и следующее за ним, которое будем обозначать через у. Вспомним, что число, следующее за данным, записывается с помощью буквы s, которая ставится перед этим числом, и выражается формулой у = sx, то есть «у равно числу, следующему за х». Следующий шаг заключается в том, что высказывание «каждое натуральное число» равносильно высказыванию «для всех натуральных чисел», и в этом контексте слово «имеет» означает «существует». Таким образом, аксиома принимает вид: «Для всякого натурального числа х существует натуральное число у такое, что у = sx». Если бы мы могли использовать символ