Выбрать главу

Больший интерес для нас будет иметь процесс «гёделизации», рассмотренный в главе 4. Он заключается в присвоении огромных натуральных чисел каждой формуле логики первого порядка так, что по известному числу можно восстановить исходную формулу. Этот метод, примененный к машинам Тьюринга, позволяет свести всю информацию, содержащуюся в программе, к одному числу. Как и в случае с «гёделизацией», машины Тьюринга соответствуют не всем числам, а только тем, которые обладают определенными свойствами. Хотя существует бесконечное множество машин Тьюринга, его размеры не могут превышать размеры множества натуральных чисел, так как всякая машина Тьюринга кодируется с помощью натуральных чисел.

Таким образом, мы доказали, что множество машин Тьюринга является счетным, следовательно, счетным является и множество вычислимых функций, которые по сравнению со множеством всех функций подобны иголке в стоге сена.

Проблема остановки

Лейбниц, а в начале XX века и Давид Гильберт — мечтали создать машину, способную отличать истинные высказывания от ложных. Как мы отметили в главе 3, программа Гильберта по «очистке» математики от парадоксов заключалась не только в формировании ее устойчивого фундамента — с этим справились древние начиная с Евклида, и пока что основы математики стояли прочно. Для абсолютной уверенности в том, что в будущем никакой Рассел не вытащит из рукава новый парадокс, помимо укрепления логической структуры математики, требовалось рассчитать метаматематические структуры, чтобы доказать, что они способны выдержать вес всего здания науки. Первые два вопроса, которыми задался Гильберт, звучали так: является ли математика полной и непротиворечивой, иными словами, совпадает ли истинное и доказуемое, и нет ли риска столкнуться с противоречиями в математике. За три года до того, как Гёдель доказал, что для арифметики эти требования несовместимы, Давид Гильберт и его ученик Вильгельм Аккерман (1896–1962) добавили к этим вопросам еще один, который был изложен на первом пленарном заседании Международного математического конгресса в 1928 году.

Проблема разрешения (Entscheidungsproblem) заключалась в том, чтобы доказать существование алгоритма, на вход которого подается математическое высказывание, а возвращается — «истина» это или «ложь». Хотя множество аксиом должно быть рекурсивно перечислимым, для множества теорем, как вы увидите далее, это требование невыполнимо. Однако сначала воссоздадим сцену, связанную с новой проблемой Гильберта, свидетелем которой был автор этой книги. Этот случай произошел на Международном математическом конгрессе в Мадриде в августе 2006 года.

Некий математик беседовал с кем-то, кого принял за журналиста. После обмена шутками о шайке воров, от которых пострадали некоторые присутствующие на конференции, один из участников разговора захотел узнать, чем занимается другой.

Это было рискованно: наиболее вероятно, что ответом на вопрос стал бы получасовой монолог, во время которого энтузиазм говорящего рос так же быстро, как угасал интерес слушателя. Однако в этот раз математик решил, что журналист не поймет его объяснений, поэтому ограничился тем, что сказал: «Смотрите: у меня есть машина, в которую я ввожу высказывание, и она отвечает, истинно это высказывание или ложно». Тогда мнимый журналист, который до того момента прекрасно скрывал свое истинное лицо, воскликнул: «Превосходно! Не сможете ли вы как-нибудь одолжить мне эту машину на денек-другой? Я работаю со множеством математических гипотез и совершенно не представляю, истинны они или ложны».

Да, всем нам хотелось бы иметь такую машину, однако Алан Тьюринг в ходе исследований, посвященных вычислимым функциям, доказал, что создать ее невозможно. Для этого он рассмотрел универсальную машину, входными значениями для которой могли выступать не только числа, но и инструкции произвольной машины Тьюринга. Если инструкции описывали то, что мы сегодня называем программой, то универсальная машина сама по себе была подобна компьютеру и была способна имитировать, по крайней мере теоретически, работу произвольной машины Тьюринга. Описав этот абстрактный компьютер, ученый на несколько лет предвосхитил архитектуру современных компьютеров, поэтому редакция журнала Time совершенно справедливо включила его в число людей тысячелетия с комментарием: «Каждый раз, когда мы нажимаем на клавишу компьютера, мы работаем с реинкарнацией машины Тьюринга». Использовав этот компьютер (которых, строго говоря, тогда еще не существовало), Тьюринг показал, что существование подобной «машины истинности» приводит к абсурдному результату.