Выбрать главу

Мы выбрали модель Бельтрами произвольно, из множества возможных. В том же самом пространстве мы можем назвать «прямыми» дуги окружности — в этом случае не будет выполняться первый постулат, так как две данные точки можно будет соединить неограниченным числом способов. Чтобы однозначно определить окружность, требуются три точки, и именно возможность выбрать третью точку произвольно и будет препятствовать выполнению постулата. Если в некоторых моделях первый постулат выполняется, а в других — нет, то истинность утверждения, согласно которому через две «точки» проходит единственная «прямая», зависит от значения понятий «точка» и «прямая», и задаваться вопросом о его истинности столь же нелепо, как и размышлять об истинности пророчества «В году А родится В», где читатель может заменить А и В произвольными значениями.

Пространство, в котором две разные прямые соединяют точки А и В и в котором не выполняется первый постулат Евклида.

Именно это мы имели в виду, когда говорили, что Эйнштейн очень четко понимал исключительно формальный характер геометрии. Несмотря на это его интересовали не логические отношения между понятиями, а конкретный вопрос о том, как объяснить действие сил на расстоянии, не используя понятие эфира. Для Эйнштейна «точками» были точки пространства, положение которых определялось координатами, указывающими их местоположение и момент времени, когда мы их рассматриваем. «Прямыми» для него были кратчайшие пути между двумя точками, вдоль которых движется луч света. Если для того чтобы объяснить природу пространства, физику нужно отказаться от постулата о параллельности прямых, то почему бы не сделать этого? В мае 1919 года, спустя четыре года после того, как Эйнштейн определил тяготение как меру кривизны Вселенной, экспедиции на африканский остров Принсипи удалось обнаружить, как отклоняется луч света звезд, близких к Солнцу и видимых только во время солнечных затмений. Именно эти эксперименты вкупе с теоретическими исследованиями, а не использование неевклидовой геометрии, позволили подтвердить корректность теории относительности.

Разумеется, когда Евклид работал над «Началами», он не думал о том, что его «точки» и «прямые» можно заменить чем-то другим. Для него все составляющие геометрии были наполнены физическим значением. Доказательством этому служат формулировки аксиом, которые, в частности, гласят, что для двух данных точек можно провести соединяющую их прямую, а не что для всякой пары «точек» существует единственная «прямая», их содержащая, — как мы обычно понимаем эту аксиому. Различие между двумя этими формулировками заключается в этом едва заметном переходе от точек к «точкам» и от «можно провести» к «существует». Именно этот переход привел к тому, что геометрия обрела абстрактный характер, и родилась математическая логика.

Новые системы аксиом

Первым следствием революции, произошедшей в геометрии, стало переопределение понятия аксиомы: теперь не имело смысла искать «очевидные истины». С момента рождения неевклидовой геометрии аксиома стала представлять собой не более чем утверждение, которое из соображений удобства становится основой некоторой теории, после чего из этого утверждения выводятся теоремы. Живительная особенность языка заключается в том, что мы можем сочетать слова так, как нам заблагорассудится, но если мы будем соблюдать определенные правила, наш собеседник всегда поймет нас, даже если мы произносим фразу впервые. Однако придумав новое слово, мы должны объяснить его значение другим людям, и если они посчитают это слово бесполезным или неблагозвучным, оно вряд ли приживется в языке. Нечто подобное происходит и в логике: утверждение нельзя доказать «с чистого листа» — на этом листе вначале нужно записать некоторые принципы, истины, с которыми согласны все, а также правила дедукции или логического вывода, благодаря которым мы сможем получить новые утверждения на основе аксиом.