Выбрать главу
Касательные окружности, рациональное приближение, диофантовы уравнения и роман «Улей»

Среди великого изобилия законов, теорем и гипотез, населяющих необозримый мир элементарной математики, выберем случайным образом трех главных героев нашей истории. Как и на страницах «Улья», эти персонажи кажутся настолько далекими друг от друга, насколько это позволяет невероятная широта и многообразие математики.

Однако в конечном счете отсутствие связей оказывается мнимым.

Первый персонаж нашей истории живет в старом квартале геометрии: это построение, в котором участвуют касательные окружности. Для удобства я дам имена всем трем нашим персонажам. Не думаю, что читатель очень удивится, когда узнает, что я дал им имена героев романа «Улей». Так, я назову нашего первого героя доньей Росой. В романе Селы донья Роса — хозяйка кафе «Утеха», где происходит действие многих эпизодов романа. «Мир для доньи Росы, — пишет Села, — это ее кафе и все прочее, что находится вокруг ее кафе. Говорят, что, когда приходит весна и девушки надевают платья без рукавов, у доньи Росы начинают поблескивать глазки. Я думаю, все это болтовня: донья Роса не выпустит из рук серебряной монеты ни ради каких радостей жизни. Что весной, что осенью. Самое большое удовольствие для нее — таскать взад-вперед свои килограммы вот так, прохаживаясь между столиками»[6].

Второе действующее лицо нашей истории живет в рабочем районе приближений: это метод, позволяющий верно определить приближенное значение произвольного числа, например √2 или π, с помощью дробей. Этого персонажа я назову Мартин Марко. В романе «Улей» Мартин Марко — поэт-идеалист левых взглядов, который остался вне игры, когда закончилась гражданская война: «Мартин Марко, бледный, изможденный, в обтрепанных брюках и потертой куртке, прощается с официантом, поднеся руку к полям своей убогой, грязной серой шляпы». Мартин Марко выживает только благодаря заботам друзей и старых знакомых, питается жареными яйцами, которые тайком от мужа готовит ему сестра Фило, и ночует в свободных кроватях отдыхающих проституток борделя, который держит старая подруга его матери.

Третий и последний герой нашей истории — житель самого дорогого и эксклюзивного района математики — теории чисел. Это диофантово уравнение

p2 + q2 + r2 = 3·p·q·r,

точнее, тройки натуральных чисел, удовлетворяющие этому уравнению. Этого героя я назову Хулитой в честь героини романа, которую Села изображает несколько ветреной и легкомысленной: «Она красит волосы в рыжий цвет. Со своей пышной волнистой шевелюрой она похожа на Джин Харлоу». Хулита — племянница доньи Росы и встречается со своим ухажером в апартаментах доньи Селии. Возможно, многим пуристам из мира математики покажутся неуважительными подобные параллели между математическими понятиями и героями романа Селы.

Не отрицаю, что стремление сравнить геометрию или даже ее раздел с коварной доньей Росой, полной, нечистоплотной и эгоистичной женщиной, или сравнить рациональное приближение иррациональных чисел с мечтателем Мартином Марко, олицетворением всех неудачников, или знаменитое диофантово уравнение — с модницей Хулитой Леклерк де Моисее не лишено концептуального риска. Однако и подобные сравнения, и сопутствующий им риск — важнейший элемент игры, которую я предлагаю читателю.

Биография всех наших героев берет начало во времена древних греков, однако, как вы увидите далее, это совпадение будет не единственным и даже не самым важным. Как и в любом романе, совпадения в математике не случайны.

Донья Роса, или построения с касательными окружностями

вернуться

6

Здесь и далее перевод Е. М. Лысенко. — Примеч. ред.