Выбрать главу

Размышления Харди применительно к практике

Теперь вернемся к рассуждениям Харди о двух основных свойствах, которые наделяют математическую идею эстетической ценностью. Харди писал: «Два качества играют существенную роль: общность и глубина идеи, но ни одно из них не поддается определению легко и просто».

Говоря об общности математической идеи, Харди уточнял: «Значительная математическая идея, серьезная математическая теорема должна обладать "общностью" в каком-то следующем смысле. Идея должна быть составляющей частью многих математических конструкций, используемых в доказательствах многих теорем различного рода. Теорема должна быть такой, что даже если первоначально она сформулирована в весьма частном виде (как теорема Пифагора), она должна допускать существенное обобщение и быть типичной для целого класса теорем аналогичного рода. Отношения, выявляемые в ходе ее доказательства, должны связывать многие различные математические идеи». Чтобы у читателя не осталось никаких сомнений относительно того, насколько сложно точно определить «общность», Харди писал: «Всё это очень смутно и требует многочисленных уточнений».

Рассмотрим пример, приведенный Эйлером: обладает ли ряд Эйлера общностью в том смысле, в каком трактовал это свойство Харди? Да, этот ряд действительно обладает общностью, причем в нескольких значениях.

Основная идея Эйлера заключалась в том, чтобы использовать для вычисления некоторых бесконечных сумм два представления одной и той же функции: одно в виде произведения, другое — в форме ряда. В представленном выше случае Эйлер с помощью функции синуса нашел сумму чисел, обратных квадратам натуральных чисел. Применив другие функции, Эйлер во «Введении в анализ бесконечно малых» с помощью аналогичного метода вычислил множество сумм бесконечных рядов, в частности:

В этой сумме с противоположными знаками записаны числа, обратные кубам нечетных чисел, за исключением кратных 3.

Однако общность идеи Эйлера не ограничивается одной лишь заменой функции синуса на другие. В его методе рассматривается выражение

Число, на которое последовательно умножается z2, связывается с суммой чисел, на которые умножается z2 в левой части равенства. В слегка видоизмененном виде идея Эйлера становится еще более плодотворной. Достаточно обратить внимание на числа, которые умножаются на остальные степени переменной в правой части равенства и выразить их через коэффициенты при z2 в левой части равенства (см. врезку на следующей странице). Применив эту идею, Эйлер вычислил не только сумму чисел, обратных квадратам натуральных чисел, но и чисел, обратных четвертым, шестым и восьмым степеням:

Ему удалось дойти до 26-й степени:

Надеемся, что читатель смог оценить всю общность рассуждений Эйлера и, как следствие, лучше понять, что хотел сказать Харди, когда писал об общности математической идеи: именно общностью, помимо гениальности, отличается рассмотренная идея Эйлера.

Согласно Харди, другое неотъемлемое свойство, наделяющее математическую идею эстетической ценностью, — это глубина. «Второе свойство, которое я потребовал от значительной идеи, — ее глубина. Определить его еще труднее. Оно каким-то образом связано с трудностью; "более глубокие" идеи обычно труднее постичь, но вместе с тем это не одно и то же. Создается впечатление, что математические идеи "стратифицированы", то есть расположены как бы слоями, идеи в каждом слое связаны целым комплексом отношений между собой и с идеями, лежащими в верхних и нижних слоях. Чем ниже слой, тем глубже (и, как правило, труднее) идея».

* * *

ЭЙЛЕР И БЕСКОНЕЧНЫЕ РЯДЫ

Эйлер уточнил свою исходную идею следующим образом. Вернемся к произведению

(1 — az2)·(1 — bz2)·(1 — cz2)·… = 1 — Az2 + Bz4 - Cz6 +…

Теперь рассмотрим число 8, на которое умножается z4. Нетрудно видеть, что это число В образуется попарным умножением с последующим сложением чисел а, Ь, с которые умножаются на z2 в левой части равенства: B = ab + ac + bc + …

Таким образом, если мы запишем Р = а + Ь + с +… и Q = а2 + Ь2 + с2 + …. путем простых подсчетов имеем: РA и Q = A·P2·B.