Выбрать главу

Кантору удалось объединить в пары натуральные и целые числа, натуральные и дробные числа. Вопреки доводам логики, согласно которым целое больше его части, рассуждения Кантора показывали, что натуральных чисел столько же, сколько и дробных.

Однако для выполнения расчетов с бесконечностью Кантору потребовались бесконечные множества разного размера. Первый важный результат был получен в конце 1873 года, когда Кантор обнаружил два бесконечных множества, элементы которых нельзя было объединить попарно. Точнее, ученый доказал, что натуральные числа нельзя объединить в пары с точками произвольного отрезка. Этот результат стал одним из самых революционных в истории математики. Для этого утверждения, сколь важного, столь и глубокого, Кантор в 1899 году нашел в высшей степени простое и элегантное доказательство. Этим доказательством, подобно картинам импрессионистов, можно полнее насладиться, зная его историю и необходимый контекст.

Кантор в 1894 году, в возрасте 49 лет, когда он пытался систематизировать теорию множеств.

Доказательство Кантора

Для простоты вместо точек отрезка рассмотрим все бесконечные последовательности вида 0, а1, a2, а3, …, где каждая цифра 0, а1, a2, а3, … имеет значение 0 или 1. Нетрудно видеть, что число различных последовательностей такого типа равно числу точек отрезка (однако доказательство этого утверждения будет носить несколько технический характер).

В доказательстве Кантора используется так называемый диагональный метод, который для любой пары, состоящей из одного из чисел 1, 2, 3, 4… и двоичной последовательности, позволяет найти такую двоичную последовательность, которая не будет парой ни для одного числа. Представьте, что дана произвольная пара, образованная числом и двоичной последовательностью. Для простоты рассмотрим следующие несколько пар.

Обратите внимание на цифры, обведенные квадратной рамкой: первую цифру первой последовательности, вторую цифру второй последовательности и так далее. Построим новую последовательность (она приведена в конце списка и отделена многоточием), изменив эти цифры: заменим единицы нулями, а нули — единицами. Таким образом, первой цифрой новой последовательности будет 0, второй — 0, третьей — 1, четвертой — 0 и так далее. Так мы гарантируем, что вне зависимости от последующих цифр новая последовательность будет отличаться от всех предыдущих: она будет отличаться от первой последовательности первым знаком, от второй — вторым, от третьей — третьим и так далее. Это должно убедить читателя, что в представленном выше списке для созданной нами двоичной последовательности не найдется пары. Если немного подумать, то станет понятно, что метод Кантора не зависит от представленного выше списка. Если список изменить, мы сможем применить этот метод к новому списку и сформировать новую последовательность, для которой не найдется пары.

* * *

ДИАГОНАЛЬНЫЙ МЕТОД КАНТОРА

Этот же диагональный метод наряду с понятием подмножества позволил Кантору показать, как можно построить бесконечные множества сколь угодно большого размера. Представьте множество А = {1,2,3}, образованное тремя числами 1, 2, 3. Множество подмножеств А получается, если рассмотреть все множества, которые мы можем составить из элементов А, в том числе пустое множество 0. Обозначив множество подмножеств А через Р(А), имеем:

Кантор доказал, что если множество А бесконечное, то бесконечность, соответствующая множеству подмножеств А, будет всегда больше, чем бесконечность, соответствующая исходному множеству. В своем доказательстве Кантор вновь применил диагональный метод, адаптировав его к этой задаче. Рассмотрим пары, образованные элементами множества А и множества его подмножеств Р(А). Каждый элемент х множества А будет иметь пару — множество X, составленное из элементов А. Теперь определим подмножество А, которое не будет иметь пары: это множество Y, содержащее те элементы х множества А, которые не принадлежат соответствующему множеству X.

В самом деле, если элемент х множества А принадлежит своей паре, множеству X, то, по определению Y, элемент х не принадлежит Y. Следовательно, не = Y, так как х принадлежит X, но не Y. С другой стороны, если элемент х множества А не принадлежит своей паре Х, то, по определению Y, элемент х будет принадлежать Y. Вновь X не = Y, так как х принадлежит Y, но не X. Это доказывает, что никакой элемент х множества А не может иметь парой множество Y.