Выбрать главу

С самого начала в этом томе делается попытка пролить свет на основные и самые общие черты квантовой механики. Первые главы обращаются к представлениям об амплитуде вероятности, интерференции амплитуд, абстрактному определению состояния и к наложению и разложению состояний, причем с самого начала используются обозначения Дирака. В каждом случае введение нового представления сопровождается подробным разбором некоторых частных примеров, чтобы эти физические идеи приобрели как можно большую реальность. Затем следует зависимость состояний от времени, включая состояния с определенной энергией, и эти идеи немедленно применяются к изучению двухуровневых систем — систем, имеющих только два возможных значения энергии. Подробное изучение аммиачного мазера подготавливает почву для введения поглощения света и индуцированных переходов. Затем лекции продолжают рассмотрение более сложных систем, подводя к изучению распространения электронов в кристалле и к довольно полному изложению квантовомеханической теории момента количества движения. Наше введение в квантовую механику заканчивается обсуждением свойств шредингеровской волновой функции, ее дифференциального уравнения и решений для атома водорода.

Последнюю главу этого тома не следует считать частью «курса». Это «семинар» по сверхпроводимости, проведенный в духе тех лекций из первых двух томов, которые были прочитаны «для развлечения», чтобы помочь студентам шире взглянуть на связь того, чему их учили, с общей физической культурой. «Эпилог» Фейнмана ставит точку на этом курсе.

Как уже объяснялось в предисловии к первому тому (см. вып. 1—4), эти лекции являются лишь частью программы по разработке нового вступительного курса, проводимой в КАЛТЕХе под руководством Комитета по пересмотру курса физики (Роберт Лейтон, Виктор Неер и Мэтью Сэндс). Осуществление этой программы стало возможным благодаря помощи Фонда Форда. Техническую помощь при подготовке этого тома оказали Мэрилу Клейтон, Юлия Курцио, Джеймс Хартл, Том Харвей, Мартин Израэль, Патриция Прейс, Фанни Уоррен, Барбара Циммерман и многие другие. Проф. Джерри Нойгебауер и проф. Чарльз Уилтс внимательно прочли рукопись и во многом способствовали четкости и ясности изложения материала.

Но сама повесть о квантовой механике, которую вы здесь найдете, принадлежит Ричарду Фейнману. Наши труды не были напрасными, если нам удалось донести до других хоть долю восторга, который мы испытывали сами, следя, как в его полных жизни лекциях по физике перед нами разворачиваются все новые и новые идеи.

Мэтью Сэндс

Декабрь 1964

Выпуск 8. Квантовая механика. Часть 1

Глава 1 АМПЛИТУДЫ ВЕРОЯТНОСТИ[1]

Повторить: гл. 37 (вып. 3) «Квантовое поведение»; гл. 38 (вып. 3) « Соотношение между волновой и корпускулярной точками зрения»

§ 1. Законы композиции амплитуд

Когда Шредингер впервые открыл правильные законы квантовой механики, он написал уравнение, которое описывало амплитуду вероятности обнаружения частицы в различных местах. Это уравнение было очень похоже на уравнения, которые были уже известны классическим физикам, они ими пользовались, чтобы описать движение воздуха в звуковой волне, распространение света и т. д. Так что в начале развития квантовой механики большую часть времени люди занимались решением этого уравнения. Но в то же время началось (в частности, благодаря Борну и Дираку) понимание тех фундаментально новых идей, которые лежали в основе квантовой механики. По мере дальнейшего ее развития выяснилось, что в ней есть много такого, что прямо в уравнении Шредингера не содержится, — таких вещей, как спин электрона и различные релятивистские явления. Все курсы квантовой механики по традиции начинают с того же самого, повторяя путь, пройденный в историческом развитии предмета. Сперва долго изучают классическую механику, чтобы потом понять, как решается уравнение Шредингера. Затем столь же долго получают различные решения. И лишь после детального изучения этого уравнения переходят к «высшим» вопросам, таким, как спин электрона.

Сначала мы тоже считали, что лучше всего закончить эти лекции, показав, как решаются уравнения классической физики в различных сложных случаях, таких, как описание звуковых волн в замкнутом пространстве, типы электромагнитного излучения в цилиндрических полостях и т. д. Таков был первоначальный план этого курса. Но затем мы решили отказаться от этого плана и вместо этого дать введение в квантовую механику. Мы пришли к заключению, что то, что обычно именуют «высшими» разделами квантовой механики, на самом деле совсем простая вещь. Нужная для этого математика чрезвычайно проста — требуются лишь несложные алгебраические операции, никаких дифференциальных уравнений не нужно (или в крайнем случае нужны самые простые). Проблема только в том, чтобы перепрыгнуть через одно препятствие: усвоить, что мы больше не имеем права детально описывать поведение частиц в пространстве. И вот этим-то мы и собираемся заняться: рассказать вам о том, что обычно называют «высшими» разделами квантовой механики. Но уверяю вас, это самые что ни на есть простые (в полном смысле этого слова), но в то же время самые фундаментальные ее части. Честно говоря, это педагогический эксперимент, и, насколько нам известно, он никогда раньше не ставился.

вернуться

1

В американском издании этот том начинается с двух глав из второго тома [гл. 37 и 38 (вып. 3)], которые авторы считали нужным повторить. Это было сделано для того, чтобы третий том можно было читать, не обращаясь к прежним томам. В русском издании мы не стали печатать их снова: читатель должен всегда держать первые выпуски под рукой, поэтому нумерация глав в русском издании сдвинута на 2 единицы по сравнению с третьим томом. Из тех же соображений мы не перепечатали вновь гл. 34 и 35, они вошли в вып. 7.— Прим. ред.