Выбрать главу

Фиг. 19.1. Амплитуда перехода из а в b по пути r пропорциональна exp[(-iq/ℏ)∫Ads].

Амплитуда того, что частица при наличии поля перейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от векторного потенциала, умноженного в свою очередь на электрический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:

(19.1)

Это исходное утверждение квантовой механики.

И вот в отсутствие векторного потенциала уравнение Шредингера для заряженной частицы (нерелятивистской, без спина) имеет вид

(19.2)

где φ — электрический потенциал, так что qφ — потенциальная энергия[88]. А уравнение (19.1) равнозначно утверждению, что в магнитном поле градиенты в гамильтониане нужно каждый раз заменять на градиент минус (iq/)А, так что (19.2) превращается в

(19.3)

Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, φ.

Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому[89]. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал Аx(х, t) в x-направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/)Axb] — экспоненту с показателем, равным произведению iq/ на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать (q/)Axf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)≡Сn амплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением

(19.4)

В нем три части. Во-первых, у электрона, который находится в точке х, есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если Ах на расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения Ах посредине, умноженного на расстояние. Итак, произведение (iq/) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от х, на расстоянии b/2, и умножается на расстояние b. Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке х.

Но дальше мы знаем, что если функция С(х) достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто (Е0-2К)С(х), так что в нулевом приближении энергия равняется Е0-2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите

вернуться

88

Только, пожалуйста, не путайте это φ с нашим прежним обозначением состояния φ !

вернуться

89

К — это та самая величина, которая в задаче о линейной решетке обозначалась буквой А (см. гл. 11).