Выбрать главу

(19.5)

(штрихи обозначают дифференцирование по х).

Это ужасное нагромождение разных букв выглядит очень сложно. Но математически оно в точности совпадает с

(19.6)

Вторая скобка, действуя на С(х), даст С'(х) минус if(x)C(x). Первая скобка, действуя на эти два члена, даст член с С", члены с первыми производными f(x) и с первой производной С(х). А теперь вспомните, что решения в нулевом магнитном поле (см. гл. 11, §3) изображают частицу с эффективной массой mэфф, даваемой формулой

Если вы затем положите Е0=+2К и снова вернетесь к f(x)=(q/)Ax, то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверждение (19.1) о том, что векторный потенциал умножает все амплитуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса (ℏ/i)∇ заменяется на (ℏ/i)∇-qA, как мы и сделали в уравнении Шредингера (19.3).

§ 2. Уравнение непрерывности для вероятностей

Перехожу теперь ко второму пункту. Важную сторону уравнения Шредингера отдельной частицы составляет идея о том, что вероятность обнаружить частицу в каком-то месте определяется квадратом абсолютной величины волновой функции. Для квантовой механики характерно также то, что вероятность сохраняется локально (т. е. в каждом отдельном месте). Когда вероятность обнаружить электрон в таком-то месте убывает, а вероятность обнаружить его в каком-то другом месте возрастает (так что полная вероятность не меняется), то что-то в промежутке между этими местами должно было произойти. Иными словами, электрон обладает непрерывностью в том смысле, что если вероятность спадает в одном месте и возрастает в другом, то между этими местами должно что-то протекать. Так, если вы между ними поставите стенку, то это скажется на вероятностях и они станут не такими, как были. Следовательно, одно только сохранение вероятности не есть полная формулировка закона сохранения, все равно как одно только сохранение энергии не обладает такой глубиной и не представляет такой важности, как локальное сохранение энергии [см. гл. 27, § 1 (вып. 6)]. Если энергия исчезает, то этому должен соответствовать отток энергии от этого места. Вот и у вероятности хотелось бы обнаружить такой же «ток». Хотелось бы, чтобы было так: если где-нибудь переменится плотность вероятности (вероятность обнаружить что-то там такое в единице объема), то чтобы можно было считать, что вероятность откуда-то сюда притекла (или утекла отсюда куда-то еще). Такой ток был бы вектором, который можно было бы толковать следующим образом: его x-компонента была бы чистой вероятностью (в секунду и на единицу объема) того, что частица пройдет в направлении х через плоскость, параллельную плоскости yz. Проход в направлении +x считается положительным потоком, а проход в обратную сторону — отрицательным потоком.

Существует ли такой ток? Вы знаете, что плотность вероятности P(r, t) выражается через волновую функцию

(19.7)

И вот, я спрашиваю: существует ли такой ток J, что

(19.8)

Если я продифференцирую (19.7) по времени, то получу два слагаемых

(19.9)

Теперь для ∂ψ/∂t возьмите уравнение Шредингера — уравнение (19.3); кроме того, комплексно его сопрягите, т. е. перемените знак при каждом i, чтобы получить ∂ψ*/∂t. У вас выйдет

(19.10)

Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, действительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению

(19.11)

Не так уж сложно, как кажется на первый взгляд. Это симметричная комбинация из ψ*, умноженного на некоторую операцию над ψ, плюс ψ, умноженное на комплексно сопряженную операцию над ψ*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и положено быть) вещественно. Операция запоминается так: это попросту оператор импульса ^℘ минус qA.. Ток из (19.8) я могу записать в виде