Выбрать главу

Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через φ1 опять обозначить амплитуду того, что электрон придет в х через щель 1, т. е.

Сходным же образом φ2 будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:

Это — амплитуды проникновения электрона через щель и появления в х, когда света нет. А если свет включен, мы поставим себе вопрос: какова амплитуда процесса, в котором вначале электрон выходит из s, а фотон испускается источником света L, а в конце электрон оказывается в x, а фотон обнаруживается у щели 1? Предположим, что мы с помощью счетчика D1 наблюдаем фотон у щели 1 (фиг. 1.3), а такой же счетчик D2 считает фотоны, рассеянные у щели 2.

Фиг. 1.3. Опыт, в котором определяется, через которую из щелей проник электрон.

Тогда можно говорить об амплитуде появления фотона в счетчике D1 а электрона в x и об амплитуде появления фотона в счетчике D2, а электрона в х. Попробуем их подсчитать.

Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1|s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик D1. Обозначим эту амплитуду через а. Затем имеется амплитуда <x|1> того, что электрон переходит от щели 1 к электронному счетчику в х. Амплитуда того, что электрон перейдет от s к х через щель 1 и рассеет фотон в счетчик D1, тогда равна

Или в наших прежних обозначениях это просто аφ1.

Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик D1. Вы скажете: «Это невозможно; как он может рассеяться в счетчик D1, если тот смотрит прямо в щель 1?» Если длина волны достаточно велика, появляются дифракционные эффекты, и это становится возможным. Конечно, если прибор будет собран хорошо и если используются лишь фотоны с короткой длиной волны, то амплитуда того, что фотон рассеется в счетчик D1 от электрона в щели 2, станет очень маленькой. Но для общности рассуждения мы учтем тот факт, что такая амплитуда всегда имеется, и обозначим ее через b. Тогда амплитуда того, что электрон проходит через щель 2 и рассеивает фотон в счетчик D1, есть

Амплитуда обнаружения электрона в х и фотона в счетчике D1 есть сумма двух слагаемых, по одному для каждого мыслимого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго — что фотон рассеян таким электроном в счетчик D1; мы имеем

(1.8)

Аналогичное выражение можно получить и для случая, когда фотон будет обнаружен другим счетчиком D2. Если допустить для простоты, что система симметрична, то а будет также амплитудой попадания фотона в счетчик D2, когда электрон проскакивает через щель 2, а b — амплитудой попадания фотона в счетчик D2, когда электрон проходит через щель 1. Соответствующая полная амплитуда — амплитуда того, что фотон окажется в счетчике D2, а электрон в х, — равна

(1.9)

Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой вероятностью будут получаться отсчеты в счетчике D1 при попадании электрона в х. Это будет квадрат модуля амплитуды, даваемой формулой (1.8), т. е. попросту |aφ1+bφ2|2. Поглядим на это выражение внимательнее. Прежде всего, если b=0 (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен |φ1|2 с множителем |a|2. Это как раз то распределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а.