Рассмотрим с этой точки зрения систему таких природных тел, чтобы можно было пренебречь действием внешних сил. Можно установить теорему рациональной механики, сказав, что энергия этой системы постоянна, если ее разложить на две: действующую (actuelle) энергию (половина живой силы, соответствующая столько же местным движениям частей или всей системы, сколько и движениям звуковым, тепловым, световым, электрическим, магнитным и т. д.) и энергию положения — потенциальную (virtuelle), соответствующую положению каждого из элементов тела.
Если притом внутренние или внешние силы (а именно они рассматриваются физикой в данном случае) таковы, что потенциальная энергия зависит исключительно от положения элементов, то можно в конце концов исключить из рассмотрения эти силы и сказать, что энергия системы естественных тел может изменяться только путем заимствования или уступки соседним системам.
Таков точный смысл, который следует придавать знаменитому принципу сохранения энергии. Однако нужно отметить явную тенденцию придавать ему еще более важный смысл, — тенденцию, особенно проявившуюся в этот период в книге Секки Единство физических сил (Unita delle forze fisiche, 1869), но не приведшую к решительным выводам и ныне встречающую, невидимому, все меньше и меньше сторонников.
Утверждение общего принципа, из которого исключено понятие силы, вело к упразднению этого понятия или, по крайней мере, к отнесению его в число производных. Сила как явление есть следствие, а не причина движения. В таком случае становится необходимым найти механическое объяснение всем естественным силам, действующим на расстоянии, и прежде всего всемирному тяготению; для этого нужно представить себе среды, одаренные свойствами, удобными для определения законов превращения движения; виртуальная энергия не должна уже в таком случае принципиально различаться от энергии актуальной; в действительности она будет реально передаваться среде, потому что признаваться будут только силы в момент соприкосновения, дающие начало работам, взаимно уничтожающимся.
Таковы были математические рамки, навязывающиеся физикам законами механики, когда в 1849 году Гельмгольц (1811–1894) приступил к обобщению в одну доктрину и к пропаганде идей, выработанных в предыдущем столетии. Этот знаменитый ученый, родившийся в Потсдаме, сперва был военным врачом, до 1848 года; затем преподавал физиологию в Кенигсберге, Вене и Гейдельберге, после чего занял кафедру физики в Берлинском университете(1871). Сильный математик, гениальный экспериментатор, столь же глубокий мыслитель и столь же остроумный популяризатор, как Галилей, он оставил след в самых разнообразных областях знания. Особенно памятно в акустике его блестящее объяснение тембра наслоением и относительной напряженностью основного звука и его гармонических тонов, — объяснение, содержащееся в книге Учение о восприятии звука (Lehre von den Tonempfindungen, 1862).
Что касается собственно механической теории теплоты, то лишь основания ее были начертаны Джоулем и Майером. Самое здание было воздвигнуто другим немецким ученым, Клаузиусом (1822–1868), в исследованиях, печатавшихся с 1848 по 1862 год в Анналах Поггендорфа и объединенных в 1864 году в одно сочинение, остающееся классическим. Клаузиус нашел забытые или неопубликованные законы Сади Карно. К ним он присоединил новое учение — об энтропии, истинное значение которого еще не учтено полностью и согласно которому мировая система эволюционирует к более равномерному распределению теплоты и уменьшению местных движений. Наконец, он обосновал кинетическую теорию газов, которая считает их состоящими из частиц, охваченных очень быстрыми движениями и сталкивающихся одна с другой; он показал, что эта гипотеза может быть формулирована таким образом, что из нее математически следуют основные законы Мариотта я Гей-Люссака.
Электричество; подводный телеграф; Вильям Томсон, Максуэлл. В Англии после Ранкайна распространению новых идей и широкому их освещению способствовал Вильям Томсон (впоследствии лорд Кельвин), родившийся в 1824 году. Но в рассматриваемый период он особенно увлекался успехами электричества; еще не было тех его приложений, какие появились в наше время, но телеграфное дело уже быстро развивалось, и уже начинали подумывать о том, чтобы перебросить подводный кабель по дну Атлантического океана и установить сообщение между Старым и Новым Светом. Это предприятие, ныне кажущееся совсем не трудным, удалось впервые лишь в 1866 году, после нескольких лет бесплодных попыток. Выть может, это — чудеснейшее свидетельство XIX века о мощи технической науки и превосходстве человеческого ума над природой. Вильям Томсон изобрел остроумнейшие аппараты для отправки и приема телеграфных сигналов, а также множество точных и тонких инструментов, сделавших возможными измерения, необходимые для прогресса чистой и прикладной науки. Искусный математик, он значительно усовершенствовал приемы вычисления; вместе с тем теория обязана ему столь же смелыми, как и остроумными объяснениями многих электрических явлений.
Наряду с ним Максуэлл (1831–1879), придав идеям Фарадея более строгое и математическое выражение, строил электромагнитную теорию света. Показав преобладающую роль изолирующей среды в электрических явлениях, он считал световые явления тожественными с явлениями индукции, быстро сменяющимися и распространяющимися по тому же механическому закону в различных средах. Эта теория, в отличие от всех других, господствовавших до того времени, получила впоследствии блестящее экспериментальное подтверждение.
Спектральный анализ: Кирхгоф и Бунзен. Скорость света: Физо и Фуко. Спектральный анализ был создан в Гейдельберге совместными трудами физика Кирхгофа (1824–1887) и химика Вунзена (родился в Гёттингене в 1811 году), знаменитого также другими работами, а именно изобретением гальванического элемента, носящего его имя. Кирхгоф в ряде исследований, одновременно и математических и экспериментальных, продолжавшихся с 1857 по 1860 год, первый сделал выводы из предвиденного еще Брьюстером и Онгстремом факта совпадения темных линий солнечного спектра (так называемых фраунгоферовых)1 с светлыми линиями металлических паров, доведенных до состояния свечения. По его теории, темные линии происходят от поглощения парами, находящимися в солнечной атмосфере, некоторых лучей, испускаемых раскаленной жидкой массой светила. Если пары какого-нибудь вещества сами становятся источником света (например, если ввести в пламя самое ничтожное количество этого вещества), то они дают характерную яркую линию, в точности совпадающую с темной линией, которую дают те же пары в охлажденном состоянии. Значит, можно утверждать о присутствии, например в солнечной атмосфере, паров всех тел, спектры которых, изученные на земле, представили яркие линии, тожественные с теми или иными фраунгоферовыми линиями.
Но спектральный анализ оказывает услуги не только в деле распознавания на солнце или звездах веществ, встречающихся у нас на земле, что доказывает единство состава вселенной. Он является также в руках химика новым и драгоценным приемом исследования, так как дает возможность различить, например, в минерале присутствие металлов по характерным линиям, когда они содержатся в нем в слишком ничтожном количестве, чтобы их можно было обнаружить посредством самых чувствительных химических реакций. Наконец спектральный анализ позволяет выделить металлы, дающие светлые линии, которые нельзя приписать ни одному из известных веществ. Этим пролагается путь к открытию новых простых тел. Эту сторону метода Кирхгофа и осветил Бунзен, немедленно применив его для открытия цезия и рубидия (1862).
С тех пор изучение спектров приобрело капитальную важность; появилось множество трудов по этому и смежным вопросам. Надо еще упомянуть о ценных работах Стокса и Эд. Беккереля по флуоресценции и фосфоресценции.
Мы только что упомянули первое французское имя в нашем обзоре успехов науки за этот период; школа французских физиков бесспорно отстала в середине XIX века от иностранцев. В то время как один за другим исчезали знаменитые ученые, составившие славу Франции, но за старостью уже неспособные поддержать эту славу, смерть скосила во цвете лет, прежде, чем они успели дать все, что могли, лучших людей следующего поколения: Вертгейма, а также Сенармона и Верде — этих двух несравненных профессоров.