Для каждой тройки можно построить прямоугольный треугольник, длины сторон которого будут выражены целыми числами. Ферма доказал, что площадь таких треугольников никогда не может быть равна квадрату числа.
* * *
Слово «совершенные» больше связано с эстетикой, чем с математикой. Эти числа красивы не из-за каллиграфического написания, не потому, что их сложно найти и не из-за витиеватости определения. Вместо этого они обладают одним очень простым свойством.
Возьмем в качестве примера число 6. Его делители, то есть числа, на которые оно делится без остатка, — это 1, 2, 3 и 6. Удивительно, но 1 + 2 + 3 = 6, то есть сумма всех делителей, меньших 6, дает в сумме 6. Следующее совершенное число — 28. Его делители равны 1, 2, 4, 7, 14 и 28. Нетрудно видеть, что 1 + 2 + 4 + 7 + 14 = 28. Следующее совершенное число — 496. Его делители таковы: 1, 2, 4, 8, 16, 31, 62, 124, 248 и 496, и нетрудно показать, что 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496. Следующее совершенное число — 8128, так как 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 = 8128. Эти четыре совершенных числа были известны еще в Античности. Евклид упоминает их в своей книге «Начала» и в теореме 36 книги IX приводит общую формулу для этих чисел.
Появление совершенных чисел
Примерно в 100 году философ Никомах Герасский, представитель неопифагореизма, написал «Введение в арифметику», где приводилась классификация всех чисел. Числа делились на избыточные (сумма делителей которых больше самого числа), недостаточные (сумма делителей которых меньше самого числа) и совершенные (сумма делителей которых равна самому числу). В этой книге объясняется формула Евклида для нахождения совершенных чисел, «которая охватывает все совершенные числа и не включает ни одного, которое таковым не является. Совершенные числа находятся так. Сначала нужно записать в ряд некоторое количество степеней двойки, начиная с единицы и заканчивая любым выбранным вами числом: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096. Для каждого нового члена нужно найти сумму этого ряда. Если результат не является составным числом, его нужно умножить на последнее число, добавленное в ряд. Результат умножения всегда будет совершенным числом. Если же сумма не является простым числом, нужно прибавить к ней следующий член ряда и посмотреть, является ли новая сумма составным числом. Если результат — составное число, нужно продолжать складывать члены ряда. Если же результат является простым числом, его нужно умножить на последний член ряда, результат будет совершенным числом, и так до бесконечности. Это легко проверить на конкретных примерах:
1 + 2 = 3 является простым, следовательно,
(1 + 2)·2 = 3·2 = 6 — совершенное число.
1 + 2 + 4 = 7 является простым, следовательно,
(1 + 2 + 4)·4 = 7·4 = 28 — совершенное число.
1 + 2 + 4 + 8 = 13 не является простым, поэтому мы пропускаем его.
Далее
1 + 2 + 4 + 8 + 16 = 31 является простым, следовательно,
(1 + 2 + 4 + 8 + 16)·16 = 31·16 = 496 — совершенное число.
1 + 2 + 4 + 8 + 16 + 32 = 63 не является простым, поэтому мы пропускаем его.
Наконец, 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 — простое, следовательно,
(1 + 2 + 4 + 8 + 16 + 32 + 64)·64 = 127·64 = 8128 — совершенное число.
С помощью этой формулы действительно можно найти первые четыре совершенных числа. Существует и другая, более простая формула для нахождения совершенных чисел. Нетрудно видеть, что если мы складываем степени двойки, начиная с нулевой и не пропуская ни одной, то результатом будет следующая степень двойки минус один, иными словами,
1 + 2 = 3 = 4–1 = 22 — 1;
1 + 2 + 4 = 7 = 8–1 = 23 — 1;
1 + 2 + 4 + 8 = 15 = 16 — 1 = 24 — 1.
И так далее. Таким образом, мы можем преобразовать формулу Евклида и записать ее в современной математической нотации:
6 = (22 — 1)·2
28 = (23 — 1)·22
496 = (25 — 1)·24
8128 = (27 — 1)·26.
И всякий раз, когда 2n — 1 простое число, (2n — 1)·2n-1 будет совершенным числом.
Предположения о совершенных числах
Математики Античности, которым были известны первые четыре совершенных числа, выдвигали самые разнообразные предположения. Например, можно заметить, что значение n для первых четырех простых чисел является членом последовательности простых чисел 2, 3, 3, 7. Возникает соблазн предположить, что следующим совершенным числом будет (211 — 1)·210, но это не так, потому что 211 — 1 = 2047 = 23·89. Это число не является простым, следовательно, n = 11 не соответствует совершенному числу.