Выбрать главу

Для каждой тройки можно построить прямоугольный треугольник, длины сторон которого будут выражены целыми числами. Ферма доказал, что площадь таких треугольников никогда не может быть равна квадрату числа.

* * *

Слово «совершенные» больше связано с эстетикой, чем с математикой. Эти числа красивы не из-за каллиграфического написания, не потому, что их сложно найти и не из-за витиеватости определения. Вместо этого они обладают одним очень простым свойством.

Возьмем в качестве примера число 6. Его делители, то есть числа, на которые оно делится без остатка, — это 1, 2, 3 и 6. Удивительно, но 1 + 2 + 3 = 6, то есть сумма всех делителей, меньших 6, дает в сумме 6. Следующее совершенное число — 28. Его делители равны 1, 2, 4, 7, 14 и 28. Нетрудно видеть, что 1 + 2 + 4 + 7 + 14 = 28. Следующее совершенное число — 496. Его делители таковы: 1, 2, 4, 8, 16, 31, 62, 124, 248 и 496, и нетрудно показать, что 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496. Следующее совершенное число — 8128, так как 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 = 8128. Эти четыре совершенных числа были известны еще в Античности. Евклид упоминает их в своей книге «Начала» и в теореме 36 книги IX приводит общую формулу для этих чисел.

Появление совершенных чисел

Примерно в 100 году философ Никомах Герасский, представитель неопифагореизма, написал «Введение в арифметику», где приводилась классификация всех чисел. Числа делились на избыточные (сумма делителей которых больше самого числа), недостаточные (сумма делителей которых меньше самого числа) и совершенные (сумма делителей которых равна самому числу). В этой книге объясняется формула Евклида для нахождения совершенных чисел, «которая охватывает все совершенные числа и не включает ни одного, которое таковым не является. Совершенные числа находятся так. Сначала нужно записать в ряд некоторое количество степеней двойки, начиная с единицы и заканчивая любым выбранным вами числом: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096. Для каждого нового члена нужно найти сумму этого ряда. Если результат не является составным числом, его нужно умножить на последнее число, добавленное в ряд. Результат умножения всегда будет совершенным числом. Если же сумма не является простым числом, нужно прибавить к ней следующий член ряда и посмотреть, является ли новая сумма составным числом. Если результат — составное число, нужно продолжать складывать члены ряда. Если же результат является простым числом, его нужно умножить на последний член ряда, результат будет совершенным числом, и так до бесконечности. Это легко проверить на конкретных примерах:

1 + 2 = 3 является простым, следовательно,

(1 + 2)·2 = 3·2 = 6 — совершенное число.

1 + 2 + 4 = 7 является простым, следовательно,

(1 + 2 + 4)·4 = 7·4 = 28 — совершенное число.

1 + 2 + 4 + 8 = 13 не является простым, поэтому мы пропускаем его.

Далее

1 + 2 + 4 + 8 + 16 = 31 является простым, следовательно,

(1 + 2 + 4 + 8 + 16)·16 = 31·16 = 496 — совершенное число.

1 + 2 + 4 + 8 + 16 + 32 = 63 не является простым, поэтому мы пропускаем его.

Наконец, 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 — простое, следовательно,

(1 + 2 + 4 + 8 + 16 + 32 + 64)·64 = 127·64 = 8128 — совершенное число.

С помощью этой формулы действительно можно найти первые четыре совершенных числа. Существует и другая, более простая формула для нахождения совершенных чисел. Нетрудно видеть, что если мы складываем степени двойки, начиная с нулевой и не пропуская ни одной, то результатом будет следующая степень двойки минус один, иными словами,

1 + 2 = 3 = 4–1 = 22 — 1;

1 + 2 + 4 = 7 = 8–1 = 23 — 1;

1 + 2 + 4 + 8 = 15 = 16 — 1 = 2 — 1.

И так далее. Таким образом, мы можем преобразовать формулу Евклида и записать ее в современной математической нотации:

6 = (22 — 1)·2

28 = (23 — 1)·22

496 = (25 — 1)·24

8128 = (27 — 1)·26.

И всякий раз, когда 2n — 1 простое число, (2n — 1)·2n-1 будет совершенным числом.

Предположения о совершенных числах

Математики Античности, которым были известны первые четыре совершенных числа, выдвигали самые разнообразные предположения. Например, можно заметить, что значение для первых четырех простых чисел является членом последовательности простых чисел 2, 3, 3, 7. Возникает соблазн предположить, что следующим совершенным числом будет (211 — 1)·210, но это не так, потому что 211 — 1 = 2047 = 23·89. Это число не является простым, следовательно, n = 11 не соответствует совершенному числу.