Выбрать главу

До выхода перевода Баше теория чисел не вызывала интереса математиков. Считалось, что задачи теории чисел — не более чем математические курьезы, любопытные, но носящие частный характер. Объектами всеобщего внимания в то время были геометрия и анализ. Но после публикации трудов Ферма теория чисел быстро привлекла к себе интерес наиболее выдающихся математиков: Виета, Декарта, Гаусса, Эйлера, Якоби, Лагранжа, Лежандра, Дирихле, Дедекинда, Кронекера и многих других. Это лишь часть обширного перечня ученых, которые занимались исследованиями теории чисел — «королевы математики», как считал Гаусс.

Портрет математика XVIII века Жозефа Луи Лагранжа, который изучал различные задачи, поставленные Ферма.

* * *

РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ

Диофантовы уравнения имеют целые коэффициенты и целые решения. Сначала удалось решить диофантовы уравнения первой степени, что позволило найти решения многих практических задач. Рассмотрим один наглядный пример. Допустим, что наш сосед отправился за покупками и хочет купить растительного масла на целый год вперед. Вернувшись из магазина, он сказал, что нашел два сорта масла — один по 3,24 евро за литр, другой по 4,50 евро за литр — и что всего он потратил 43,20 евро. В ответ мы говорим, что И бутылок будет явно недостаточно на весь год.

Как мы узнали, сколько бутылок купил сосед, если мы даже не открывали пакеты, которые он принес из магазина? Обозначим за х число бутылок стоимостью 3,24 евро, за у — число бутылок по 4,50 евро. Выразим потраченную сумму с помощью уравнения и получим 3,24х + 4,50у = 43,20. Это уравнение имеет дробные коэффициенты, но если умножить обе части на 100, получим уравнение с целыми коэффициентами: 324х + 450у = 4320. Следовательно, нужно найти такие х и у, для которых это равенство было бы верным. Они должны быть целыми, так как число бутылок каждого сорта обязательно целое. Необходимое и достаточное условие наличия целых корней уравнения с целыми коэффициентами таково: наибольший общий делитель коэффициентов при неизвестных должен быть делителем свободного члена. Наибольший общий делитель 324 и 450 равен 18. 4320 нацело делится на это число. Поделив обе части уравнения на 18, получим 18х + 25у = 240. Теперь мы можем составить таблицу решений для этого уравнения. Для этого будем присваивать х целые значения, начиная с 0, и находить соответствующие значения у, которые удовлетворяют уравнению, то есть такие, что у = (240 — 18х)/25.

Из этой таблицы видно, что единственными целыми положительными решениями являются х = 5, у = 6, следовательно, всего наш сосед купил 11 бутылок растительного масла. Со временем методы решения уравнений подобного типа совершенствовались и были реализованы в компьютерных программах и инженерных калькуляторах.

* * *

В 1885 году сэр Томас Хит опубликовал первый перевод «Арифметики» на английский язык. Второе издание этого замечательного перевода увидело свет в 1910 году. В него были включены комментарии Баше, Ферма и других. Многие античные авторы оставляли в книгах свои комментарии. В различные издания и переводы часто включались примечания редактора и переводчика, но при этом не указывалось, что именно является частью исходного текста, а что — комментариями. Возможно, тогда считалось, что настоящий шедевр строится со временем и любой желающий может изучить его и дополнить чем-то новым. Следовательно, с исторической точки зрения очень важно иметь как можно больше изданий одной и той же книги, чтобы видеть, как ее текст изменялся со временем.

Изучив рукописи, которые сохранились до наших дней, Таннери предположил, что все они имеют один общий источник. По-видимому, этим общим источником является издание «Арифметики» с комментариями Гипатии Александрийской. Согласно этой же теории, данный труд включал именно те шесть книг, которые дошли до наших дней. Утерянными оказались те книги, которые не были прокомментированы Гипатией. Если это так, то именно усилиями Гипатии до нас дошла часть наследия Диофанта. Также весьма вероятно, что сама Гипатия существенно дополнила эти книги. В настоящее время исследователи продолжают работу, и окончательный ответ все еще не найден.