Выбрать главу

Под тем же псевдонимом Жермен поддерживала переписку с Гауссом. Узнав настоящее имя Жермен, в 1806 году Гаусс пишет ей: «Вкус к абстрактным наукам и, прежде всего, к загадкам чисел сам по себе редок. <…> Но когда женщина из-за своего пола и наших предрассудков встречается со значительно более трудными препятствиями, чем мужчина… и преодолевает эти барьеры и проникает в тайны мироздания, она, несомненно, проявляет благородную смелость, исключительный талант и высшую гениальность». В 1811 году Жермен стала единственной участницей конкурса, который проводила академия наук с целью найти математические основы колебаний тонких пластинок. Ей отказывали дважды, и в 1816 году она наконец выиграла премию и стала первой женщиной, получившей право посещать заседания академии (не считая жен членов академии). В 1830 году Гёттингенский университет присуждает ей почетную степень, но через год Жермен умирает, так и не успев получить ее.

Софи Жермен.

* * *

Он показал, что если р — простое число, такое, что либо 4р + 1, либо 8р + 1, либо 10р + 1, либо 14р + 1, либо 16р + 1 — простое, то первый случай теоремы Ферма доказан для данного показателя степени р. Лишь в 1977 году Тержанян доказал первый случай для всех четных показателей степени 2р, где р — простое.

Если, например, мы рассмотрим показатель степени р = 5, то заметим, что 2р + 1 = 11 — также простое число. Следовательно, согласно результатам Жермен, первый случай теоремы Ферма для этого значения доказан. Напротив, для р = 7 получим 2р + 1 = 15, которое не является простым. Если руководствоваться только результатами Жермен, то для этого значения р теорема не доказана. Однако 4р + 1 = 29 — простое, следовательно, если учитывать результаты Лежандра, первый случай теоремы Ферма доказан.

Доказательство Ламе

1 марта 1847 Габриель Ламе сделал грандиозное заявление в Парижской академии наук. Он нашел долгожданное доказательство теоремы Ферма для всех случаев! Этот французский ученый представил научному сообществу рассуждения, которые привели к такому результату. Рассуждения были просты и основывались на результатах, ранее полученных другими математиками. Он рассматривал поле комплексных чисел, где квадратный корень из минус единицы, √-1 существует и обозначается буквой i. На этом множестве х2 + у2 превращается в произведение двух комплексных чисел (х + yi)(x — yi), таким образом, происходит переход от сложения к умножению. Теорема о прямоугольном треугольнике вместо традиционного вида

х2 + у2 = z2

записывается так:

(х + yi)(x — yi) = z2.

Последнее уравнение можно решить на множестве комплексных чисел в виде х + yi, где х, у — целые (это подмножество комплексных чисел получило название гауссовых чисел). Здесь х — вещественная часть, у — мнимая часть. Это множество во многом похоже на множество целых чисел: на нем без проблем можно выполнять операции сложения, вычитания и умножения. Также на нем можно определить делимость и простые числа. Кроме того, на нем справедлива основная теорема арифметики: любое число можно единственным образом представить в виде произведения простых множителей. Интересным следствием этой теоремы является следующий факт: если произведение двух взаимно простых чисел является квадратом, то каждое из этих двух чисел также обязательно является квадратом. Согласно этим рассуждениям поиск пифагоровой тройки равносилен нахождению примитивных решений х, у, z уравнения х2 + у2 = z2, то есть такого решения, где х, у, z не имеют общих делителей.

В подобном решении гауссовы числа хyi, х — yi также не должны иметь общих делителей. Таким образом, необходимо найти два взаимно простых гауссовых числа, таких, что их произведение является квадратом.

В итоге если мы имеем примитивное решение для уравнения х2 + у2 = z2, то получим произведение двух взаимно простых гауссовых чисел, которое является квадратом. Следовательно, каждое из этих чисел также должно являться квадратом. Имеем: