Среднее значение и среднеквадратическое отклонение — две величины, характеризующие нормальное распределение.
Если вес мешков с сахаром подчиняется нормальному закону, среднее значение равно 1000 г, среднеквадратическое отклонение — 5 г, то можно рассчитать, сколько мешков будут иметь вес свыше 1010 г, сколько — от 995 до 1010 г или менее 995 г. До недавнего времени для этого требовалось выполнять расчеты и сверяться со специальными таблицами (которые до сих пор включаются в некоторые учебники по статистике), но сегодня все расчеты можно выполнить автоматически с помощью электронных таблиц Excel. Например, вероятность того, что мешок сахара весит меньше 995 г, равна
Заметим, что приблизительно 16 % мешков имеют вес менее 995 г, но о весе конкретного мешка ничего определенного сказать нельзя. По этой же причине можно говорить об ожидаемой продолжительности жизни населения, но не о конкретной дате смерти отдельного человека.
Также существуют правила, основанные на том, что вне зависимости от среднего значения (μ, читается «мю») и среднеквадратического отклонения (σ, читается «сигма») 68 % значений будут лежать в интервале μ ± σ, 95 % — в интервале μ ± 2σ, 99,7 % — в интервале μ ± 3σ. Так, в прошлом примере среднее значение μ = 1000, среднеквадратическое отклонение σ = 5. В интервале 995—1005 будет лежать 68 % результатов. Следовательно, в этот интервал не попадает 32 % значений, по 16 % с каждой стороны. Это означает, что 16 % мешков будут иметь вес меньше 995 г.
Это правило также можно использовать для интерпретации среднеквадратического отклонения. Если мы рассмотрим распределение роста людей, среднее значение может равняться 170 см. В этом случае среднеквадратическое отклонение должно лежать в интервале 6–7 см, так как 1 или 2 % населения гарантированно имеют рост выше 190 см. Следовательно, это значение превышает среднее на три среднеквадратических отклонения.
Другие виды распределения. Рассуждения о «теоретических» моделях
Существуют и другие законы распределения вероятностей. Например, если случайная величина является непрерывной и все ее значения равновероятны, распределение называется равномерным. Когда мы используем функцию «=СЛЧИС ()» в Excel для генерации случайных чисел, результаты подчиняются именно этому закону. Существует много других законов распределения. На следующей иллюстрации показаны законы распределения, включенные в пакет статистических программ Minitab.
Распределения вероятностей, для которых можно вычислить вероятности напрямую с помощью пакета статистических программ Minitab.
Однако не следует путать модель с реальностью. Например, сфера очень часто встречается во Вселенной, но не существует объектов идеально сферической формы. Зачем же тогда нужны формулы вычисления площади поверхности или объема сферы? Они позволяют получить достаточно точные значения для применения на практике. Это же справедливо и для законов распределения вероятностей.
Один из самых часто используемых примеров нормального распределения — распределение роста людей. Однако если мы возьмем точные данные о росте миллиона взрослых жителей нашей планеты, то увидим, что они не подчиняются нормальному распределению с абсолютной точностью. Этого не произойдет и в том случае, если мы разделим людей на группы в зависимости от пола, расы и других характеристик.
Нормальное распределение — это качественная модель, которая позволяет с достаточной степенью точности оценить рост людей. Тем не менее это всего лишь модель, которая не полностью соответствует реальности. Это же справедливо и для других законов распределения вероятностей, так как на практике гипотезы не выполняются с абсолютной точностью. Все эти законы описывают лишь теоретические модели (определение «теоретическая» для модели является излишним), которые тем не менее крайне полезны.