Задачи теории вероятностей могут быть достаточно сложными, даже несмотря на относительную простоту формулировки (какова вероятность того, что в выигрышной комбинации национальной лотереи встретятся два последовательных числа?). Интерес представляют необычные вероятности, которые часто противоречат тому, что подсказывает нам интуиция. В то же время сложные задачи нетрудно решить, применив немного воображения. Рассмотрим несколько примеров.
Ложноположительные результаты обследования
При медицинском осмотре у человека нашли заболевание, которое встречается всего у 1 % населения. В 5 % случаев результат обследования является ложноположительным (обследование показывает, что человек болен, когда в действительности он здоров). Какова вероятность того, что этот человек действительно болен?
Вы можете подумать, что ответ — 95 %, но это неверно. Истинная вероятность намного меньше. Из каждой 1000 результатов 50 являются ложноположительными (5 %), 1 — истинно положительным. На каждый 51 положительный результат приходится лишь один истинно положительный. Значит, вероятность того, что пациент действительно болен, равна всего 1/51, то есть немного меньше 2 %.
Задача о днях рождения
В группе 30 студентов. Какова вероятность того, что два студента или более отмечают день рождения в один и тот же день?
Многие считают, что эта вероятность невелика, но в действительности она не настолько мала, как может показаться. Сначала нужно вычислить вероятность того, что два человека родились в разные дни. Первый из них может родиться в любой день года (365 благоприятных исходов из 365 возможных), второй может родиться в любой день за исключением того дня, в который родился первый (364 благоприятных исхода из 365 возможных):
Аналогично можно вычислить вероятность того, что три человека родились в разные дни:
Вероятность того, что все 30 студентов родились в разные дни, будет равна:
Существует всего два возможных случая: либо все студенты родились в разные дни, либо минимум двое из них родились в один и тот же день. Следовательно, вероятность того, что как минимум два студента празднуют день рождения в один и тот же день, равна
* * *
СОВПАДАЮЩИЕ ДНИ РОЖДЕНИЯ
Это может показаться удивительным, но вероятность того, что в группе из 23 человек двое или более отмечают день рождения в один и тот же день, немного больше 50 % (вероятность равна 50,7 %). Если приведенные рассуждения кажутся вам неубедительными, рассмотрим разные группы из 23 человек. Проблема заключается в том, как найти такие группы людей и узнать дату рождения каждого из них. Тем не менее эту проблему можно решить.
На футбольном поле одновременно находятся 23 человека (11 + 11 + 1 судья). Стартовые составы команд и даты рождения всех игроков нетрудно найти в Интернете. Сказано — сделано[1].
Рассмотрим матчи первого тура первого дивизиона чемпионата Испании по футболу 2010 года (матчи игрались 3 января). Из 10 матчей в 5 на поле выходили игроки, отмечающие день рождения в один и тот же день, а именно:
Однако не стоит думать, что если вероятность равна 50 %, то на 10 исходов обязательно будет приходиться 5 благоприятных, ведь при 10 бросках монеты решка необязательно выпадает 5 раз. Вероятности таковы:
* * *
В группе из 30 человек двое или больше родились в один день с вероятностью порядка 70 %. В группе из 23 человек эта вероятность несколько больше 30 %, в группе из 40 человек она составляет порядка 89 %.
Вероятность того, что в группе людей два человека или более родились в один день, зависит от размера группы.
Возможен и другой вариант этой задачи, обратный исходному: какова вероятность того, что в группе из 30 человек два человека или более умрут в один день (но необязательно в один и тот же год)?
Выигрышная комбинация выпадает дважды
Рассмотрим еще один удивительный пример из теории вероятностей. Один человек всю взрослую жизнь (допустим, 30 лет) играет в лотерею. Если каждую неделю разыгрывается два тиража, какова вероятность того, что за этот период одна и та же выигрышная комбинация выпадет больше одного раза?
Существует множество различных лотерей, но, как правило, выбираются 6 чисел от 1 до 49. Число возможных комбинаций в тираже равно 13 983 816 (это число сочетаний из 49 по 6), и лишь одна является выигрышной.
1
В данном случае «сказать» намного легче, чем «сделать». Автору помогла его студентка