Выбрать главу

Являются ли эти отклонения достаточно большими, чтобы говорить о несбалансированности игральных костей? Или же эти отклонения могут возникнуть случайным образом? В конце концов, если бы результаты эксперимента в точности совпадали бы с теоретическими значениями, это тоже выглядело бы странно. Чтобы развеять сомнения, проверим статистическую гипотезу по той же схеме, что использовал Фишер для решения задачи о дегустаторе чая. Будем предполагать, что игральные кости сбалансированы, и отвергнем эту гипотезу только в том случае, если полученные данные будут явно ей противоречить.

Будем анализировать максимальное отклонение между полученными и теоретическими значениями. В предыдущей таблице показано, что для красного кубика эта величина равна 417, для белого — 599. Зададимся вопросом: каковы ожидаемые значения этой величины для идеально сбалансированных игральных костей? И снова на этот вопрос можно ответить с помощью моделирования.

Смоделируем 20000 бросков игральной кости, подсчитаем, сколько раз выпадет каждое значение, и рассчитаем максимальное отклонение от теоретического значения. При первом моделировании максимальное отклонение равнялось 83, при втором — 97. После того как моделирование было выполнено 10000 раз, была получена гистограмма, представленная на следующем рисунке. На ней также указаны значения, соответствующие красному и белому игральному кубику.

Распределение максимального отклонения для сбалансированных игральных костей и значения, полученные экспериментально.

Очевидно, что данные эксперимента противоречат гипотезе о сбалансированности игральных костей. Если бы эта гипотеза была верна, то вероятность получить подобные данные была бы очень, очень мала. В этом случае р-значение равно нулю с точностью до нескольких знаков после запятой. Следовательно, мы можем утверждать, что игральные кости несбалансированны, а вероятность того, что мы ошибаемся, практически равна нулю.

В качестве показателя, обобщающего данные эксперимента, можно использовать не максимальное отклонение, а величину, в которой учитывается отклонение для всех шести возможных результатов броска игральной кости.

Такой величиной может быть сумма всех отклонений, равных разности фактической и теоретической частоты, возведенных в квадрат (чтобы положительные и отрицательные отклонения не скомпенсировали друг друга), разделенная на теоретическую частоту.

Для красной игральной кости эта величина будет равна

Расчеты могут показаться вам излишне сложными, но эта величина обладает определенным преимуществом: она не требует моделирования распределения для случая, когда нулевая гипотеза верна (так называемого эталонного распределения). Эта величина называется критерий х2 (хи-квадрат). Ее впервые использовал в 1900 году Карл Пирсон, сыгравший важную роль в истории статистики. Мы уже упоминали его имя, когда говорили о коэффициенте корреляции.

Для обычных статистических тестов нет необходимости в моделировании распределения величины. Вместо этого оно выводится с помощью математических методов. Формула для расчета распределения коэффициента корреляции достаточно сложна и не имеет своего названия, хотя при большом размере выборки это распределение близко к нормальному. Первым, кто вывел формулу для этого распределения, был не кто иной, как Рональд Эйлмер Фишер.

* * *

СЛИШКОМ МАЛОЕ ОТКЛОНЕНИЕ ТОЖЕ ПОДОЗРИТЕЛЬНО

Если мы бросим идеально сбалансированную игральную кость 20000 раз, то каждое из возможных значений выпадет примерно 20 000/6 = 3333 раза. Отклонение фактической и теоретической частоты редко превышает 250. Это происходит всего один раз на каждые 100000 симуляций.

Однако также весьма необычно, если фактические значения очень близки к теоретическим. Допустим, игральная кость была брошена 20000 раз и были получены следующие результаты:

Есть основания подозревать, что эта информация недостоверна, так как столь малое отклонение фактической и теоретической частоты встречается всего один раз на миллион.

Фишер обнаружил любопытное совпадение между экспериментальными данными, опубликованными Менделем в его знаменитых работах о наследственности, и ожидаемыми теоретическими значениями. Удивительнее всего то, что Мендель ошибочно спрогнозировал результаты некоторых экспериментов, но полученные данные тем не менее были подозрительно близки к прогнозным значениям. По мнению Фишера, данные скорректировал необязательно сам Мендель, а кто-то из его ассистентов, который недобросовестно отнесся к работе и решил подменить реальные данные именно теми, которые ожидал увидеть Мендель.