Дисперсия и среднеквадратическое отклонение
Наиболее часто используемый показатель вариации — среднеквадратическое отклонение. Чтобы определить его, начнем с дисперсии, так как среднеквадратическое отклонение рассчитывается как квадратный корень из дисперсии.
Если бы мы хотели разработать какой-то показатель вариации, то очевидно, что в его расчете должны были бы использоваться все данные, как в случае со средним арифметическим. Например, дана выборка 1, 2, 4, 7 и 9. Можно вычислить среднюю разность между каждым значением и средней величиной, равной 4,6:
Однако этот показатель всегда будет равен нулю вне зависимости от того, какими будут элементы выборки. Следовательно, он не имеет смысла (его значение одинаково вне зависимости от вариации). Используем абсолютные значения разностей:
Этот показатель называется среднее абсолютное отклонение. Он достаточно удобен, так как большему разбросу данных соответствует большее значение этого показателя. Но все же гораздо более интересными свойствами обладает показатель, в котором проблема взаимного сокращения разностей решается путем возведения их в квадрат:
Разность между каждым значением и средним арифметическим 4,6. Дисперсия — среднее значение квадратов этих разностей.
Этот показатель называется дисперсией. Он позволяет оценить разброс значений, а также лежит в основе многих статистических методов. Дисперсия обозначается δ2. Недостаток дисперсии заключается в том, что ее единица измерения — это единица измерения исходных данных, возведенная в квадрат. Если исходная выборка состоит из значений длины в метрах, единицей измерения дисперсии будет квадратный метр, что несколько усложнит интерпретацию. Решение этой проблемы очень простое: нужно всего лишь извлечь из дисперсии квадратный корень.
Полученное значение, которое мы будем обозначать δ, называется среднеквадратическим отклонением и является самым распространенным показателем вариации. Обобщение большой выборки данных очень часто производится с помощью всего двух показателей: среднеквадратического отклонения и среднего арифметического.
* * *
НЕМНОГО ФОРМУЛ
Общая формула расчета дисперсии такова:
где xi — значения элементов выборки, μ — среднее арифметическое, N — число элементов выборки. Формула расчета среднеквадратического отклонения такова:
* * *
Коэффициент вариации
Какая величина варьируется больше — вес котов или вес коров? Допустим, что средний вес кота равен 4 кг и в 95 % случаев он лежит в интервале от 3 до 5 кг. Предположим, что вес коровы в 95 % случаев лежит в интервале от 480 до 500 кг. Если мы изучим вес котов, то увидим, что он варьируется очень сильно (некоторые коты весят почти в два раза больше других), а вес коров различается несущественно.
Среднеквадратическое отклонение веса котов будет находиться в пределах 0,5 кг. В соответствии с закономерностью вариации весов, 95 % выборки отстоит от среднего значения не более чем на два среднеквадратических отклонения. Об этом будет рассказано в следующей главе, посвященной нормальному распределению. Среднеквадратическое отклонение веса коров будет лежать в пределах 5 кг, что в 10 раз больше, однако вес коров варьируется меньше.
Чтобы разрешить этот парадокс, возникающий при сравнении вариаций, вводится коэффициент вариации, который равен частному среднеквадратического отклонения и среднего значения:
В нашем примере коэффициент вариации для веса котов равен 0,125, для веса коров — 0,01. Коэффициент вариации — безразмерная величина.
* * *
ДВЕ КЛАВИШИ ДЛЯ РАСЧЕТА СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ
Несмотря на то что дисперсия и среднеквадратическое отклонение — важнейшие показатели статистики, их часто пытаются скрыть. При попытке обобщить большую выборку данных мы можем столкнуться с одной из следующих ситуаций.
1. Интерес представляют имеющиеся данные. Мы хотим определить среднее значение или среднеквадратическое отклонение этих данных, составляющих так называемую генеральную совокупность.
2. Имеющиеся данные являются выборкой из изучаемой генеральной совокупности. Иными словами, интерес представляет не столько среднее значение или среднеквадратическое отклонение, сколько оценка (некое представление) значений генеральной совокупности.