Выбрать главу

Кварки: бета-версия

К началу 1960-х годов экспериментаторы обнаружили десятки адронов с разными массами, временем жизни и характерным вращением (спином). Огромное количество открытий вскоре привело к некоторому «похмелью», поскольку простое накопление любопытных фактов при отсутствии какого-либо более глубокого смысла дурманило разум. В 1955 году в своей речи по случаю вручения Нобелевской премии Уиллис Лэмб пошутил:

«Когда Нобелевская премия была впервые присуждена в 1901 году, физики кое-что знали всего о двух объектах, которые сейчас называются элементарными частицами: об электроне и протоне. После 1930 года появилось множество других „элементарных“ частиц: нейтронов, нейтрино, мю-мезонов, пи-мезонов, более тяжелых мезонов, а также различных гиперонов. Я слышал, как кое-кто говорит, что „за открытие новой элементарной частицы раньше давали Нобелевскую премию, но в настоящее время за такое открытие следует наказывать штрафом в размере 10 000 долларов“».

В этой ситуации Мюррей Гелл-Манн и Джордж Цвейг совершили большой прорыв в теории сильного взаимодействия, предложив кварковую модель. Они показали, что закономерности в массах, времени жизни и спинах адронов встали бы на свои места, если бы вы представили, что адроны состоят из нескольких более мелких объектов, которые Гелл-Манн назвал кварками. Десятки адронов можно было бы по крайней мере приблизительно понимать как различные комбинации, составленные всего из трех сортов (ароматов) кварков: верхнего — u, нижнего — d и странного — s[6].

Как можно создать десятки адронов из нескольких сортов кварков? Какие простые правила стоят за этими сложными закономерностями?

Изначальные правила представляли собой импровизацию, подогнанную под наблюдения, и были несколько странными. Они определили то, что называется кварковой моделью. Согласно ей существует только две основные структуры адронов. Мезоны состоят из кварка и антикварка. Барионы состоят из трех кварков. (Существуют также антибарионы, состоящие из трех антикварков.) Таким образом, есть лишь несколько возможных комбинаций различных сортов кварков и антикварков, образующих мезоны: вы можете комбинировать u с анти-d или d с анти-s и т. д. Точно так же для барионов существует лишь несколько возможных комбинаций.

Согласно кварковой модели, большое разнообразие адронов зависит не столько от того, какие фрагменты вы складываете вместе, сколько от того, как именно вы их складываете. Если конкретно, то данный набор кварков может быть организован на различных пространственных орбитах с выровненными по-разному спинами примерно так же, как пары или тройки звезд могут быть связаны друг с другом действием силы тяжести.

Существует принципиальная разница между субмикроскопическими «звездными системами» кварков и их макроскопическими аналогами. В то время как макроскопические солнечные системы, управляемые законами классической механики, могут иметь всевозможные размеры и формы, их микроскопические версии этого не могут. Для микроскопических систем, которые подчиняются законам квантовой механики, существуют ограничения, касающиеся разрешенных орбит и направлений спинов[7]. Мы говорим, что система может находиться в различных квантовых состояниях. Каждая допустимая конфигурация орбиты и спина — каждое состояние — будет характеризоваться некоторой определенной общей энергией.

(Признание и анонс: я привожу здесь несколько неаккуратное объяснение, чтобы сразу не обременять вас слишком большим количеством подробностей. Согласно современной квантовой механике, правильным способом является описание состояния частицы в терминах ее волновой функции, которая описывает вероятность ее нахождения в том или ином месте, а не в терминах орбиты, по которой она движется. Мы поговорим об этом подробнее в главе 9. Изображение орбиты представляет собой пережиток так называемой старой квантовой механики. Она полезна в качестве визуализации, но непригодна для точной работы.)

Использование кварков для понимания адронов подобно использованию электронов для понимания атомов. Электроны в атоме могут иметь орбиты различных форм и выстраивать спины в разных направлениях. Таким образом, атом может находиться в разных состояниях и иметь разную энергию. Изучению возможных состояний посвящена обширная тема, известная как атомная спектроскопия. Мы используем ее, чтобы выяснять, из чего состоят далекие звезды, проектировать лазеры и решать многие другие задачи. Поскольку атомная спектроскопия имеет отношение к кварковой модели и чрезвычайно важна сама по себе, давайте обсудим эту тему подробнее.

вернуться

6

Сорта кварков не следует путать с их цветными зарядами. Цветной заряд представляет собой другое, дополнительное, свойство. Существуют u−кварки с зарядом красного цвета, u−кварки с зарядом желтого цвета и т. д. Таким образом, при наличии трех сортов и трех цветов мы имеем всего 3 × 3 = 9 видов. — Примеч. авт.

вернуться

7

Строго говоря, законы квантовой механики являются универсальными: они применяются к макроскопическим звездным системам так же хорошо, как и к микроскопическим атомам. Тем не менее для макроскопических систем квантовые ограничения, касающиеся орбит, не имеют практического значения в связи с крайне малым расстоянием между разрешенными орбитами. — Примеч. авт.