Выбрать главу

WEIRD AND WONDERFUL

In this last category, the prolific Ericsson proposed a surface cannon firing a projectile which would continue to its target underwater (the ‘hydrostatic javelin’, the predecessor of ASROC), and three inventors, Philip Braham (1868), Lord Milton (1878) and Ericsson again (1886), proposed underwater cannon firing projectile torpedoes. Two designed dart-like weapons, William H Mallory (1878) with a coil-spring propulsion system, and Captain McEvoy (1885) with a clockwork-powered version.

More sensibly, Androvsky (1869) was a potential rival for Whitehead, but just too late: by the time his designs were ready, the Russian Admiralty had already taken delivery of their first models from Fiume. Ottmar B Gern (1872) proposed a 6-ton monster torpedo to be transported slung beneath the submarine he was developing. Paulson (1880) suggested a steam-powered torpedo steered by a compass with electrical connections to the rudder. J S Williams (1884) proposed an electric battery-powered torpedo steerable by electric cable from a shore or floating station, a kind of electrified Brennan, and Hiram Maxim’s brother Hudson (1885) proposed a straight copy of the Brennan but could not perfect the steering mechanism.

CHAPTER 6

The Torpedo Comes of Age

TORPEDO DEVELOPMENT DURING THE GREAT WAR

The torpedo now entered a stage of maturity, and concomitantly left behind the great named individuals who had imagined it, conceived it, and brought it to this maturity. From here on the developments would be driven by conflict, and the engineers were simply cogs in the machine. The notable names in this new stage would be those of the users, not the makers. There is the name of just one last designer to retain: on the eve of the Great War Lieutenant F H Sandford invented the pattern-runner. Its introduction, however, would have to wait until the following world war. Also, just before the outbreak of war, the production of British torpedoes was again moved, this time to the Royal Naval Torpedo Factory (RNTF) at Greenock, Scotland.

During the war great use was made of the popular 18in and the newer 21in torpedoes — the latter introduced in 1910 — the smaller sizes being mostly obsolete, and used only for ships’ boats in cutting-out expeditions, such as the attempts to destroy the stranded submarine E 15 in the Dardanelles. However, early RN and German submarines did retain the latest 14in models and, of course, they were the first torpedoes used successfully in drops from aircraft. The German navy introduced an interim calibre, the 50cm, which was 19.7in diameter.

The Allied blockade of Germany resulted in major non-ferric metal shortages, leading to the German occupying troops scavenging lead, brass and copper from houses in Belgium and northern France. This led them to introduce short-term expedients such as the use of cast iron instead of copper for the piping runs of their U-boat diesel engines: confiscated submarines and diesel engines in Allied hands after the Great War would cause their new owners significant problems. Despite this, the Germans concentrated on producing high-quality torpedoes, probably by taking shortcuts elsewhere, as they believed that the submarine torpedo was the decisive weapon that would help them win the war. One side effect, of course, was that they would not be producing Schwartzkopff torpedoes with phosphor-bronze bodies. Bronze would, however, continue to be used to produce U-boat torpedo tubes.

For a similar reason, having designed a stable warhead explosive in hexanite, a mixture of TNT and hexanitrodiphenylamine, the Germans continued with its production to the end of the war. This contrasted with the attitude of the British, who in 1917 were forced to dilute TNT with ammonium nitrate to produce amatol, a slightly inferior quality explosive, due to TNT being required elsewhere.

The fear of the surface torpedo was probably greater than the actual physical damage inflicted on the battle fleets. A far more dangerous development was the sinking of thousands of merchant ships by German U-boats, the majority by the torpedo.

On the Royal Navy side there were many submarine torpedo successes, but doubly galling in view of the relative scarcity of German ship targets, far too many torpedo failures. These were tracked down to inefficient exploders. Fisher became enraged, and declared he would have Assistant Director of Torpedoes Charlton ‘blown from a gun’. The reasons were the same as would reappear in the US Navy nearly thirty years later: a failure to expend expensive torpedoes in live-firing exercises involving the use of warheads against hard targets, as opposed to the standard practice of substituting a practice head. The exploders sometimes failed to go off, and it took a considerable time to find and eradicate the problem.

Thus it was infuriating for the crew of the only ‘K’— class steam submarine which ever drew a bead on a U-boat, to actually hit it with an 18in torpedo, but have it fail to explode. This class thereby failed to kill a single enemy, although accounting for a good number of RN deaths through accidents.

Again, the small, fast and highly manoeuvrable ‘R’ class, the first true hunter-killer submarines, might have made more of an impact, and promoted the future use of this new breed of submarine, had exactly the same thing not happened to one of them, seeing their torpedo hit a U-boat without exploding.

The Germans, for their part, experimented with a very large torpedo of 600mm diameter (23.6in) which they intended as the future armament of their last super-dreadnoughts and cruisers, plus the very large prototype destroyers. Very few were produced, and there is no record of their combat use. There was a proposal for an even larger torpedo, the 70cm (27.6in) J9. They did, however, make considerable advances, introducing remote control of exploding motorboats by radio, and of aerial torpedoes by wire, and they even introduced a magnetic influence exploder, which again would come to maturity late in the following world war.

In 1917 the Germans designed an electric torpedo, capable of a speed of 28 knots over 2000yds. Despite its slow speed, it had several advantages over the thermal-engined types. It was wakeless, giving escort vessels no indication of the location of the U-boat which had fired it. It did not change its mass, as did thermal torpedoes as their air and fuel were used up, so trim remained the same throughout its run. Finally, in an economy geared for war production, the electric torpedo did not require the same amount of highly-skilled man-hours in its construction as did the thermal type: it could be built by less specialised firms. Fortunately, the Armistice intervened before any electric torpedoes were fired in anger by the U-boat fleet.

The Americans produced a small experimental electric torpedo only 71/4in in diameter and some 6ft long, and followed it by a full-size 18in weapon in 1919. Then they lost interest in electric torpedoes for over twenty years. When the USA entered the war in 1917, large numbers of flush-decker destroyers were ordered, and to equip them the firm of Bliss-Leavitt produced over three thousand of their 21in Mark 8 ‘steam’ torpedoes, a production record at the time. These would remain in service with the flush-deckers through to 1945, and many would cross the Atlantic to join the Royal Navy when fifty of these veteran destroyers were delivered to Britain in 1940.

BETWEEN THE WARS

In the early 1920s the USN decided to withdraw the underwater tubes from its battleships, followed by the removal of their above-water tubes, deemed too dangerous in a big-gun battle. Above-water torpedo tubes remained standard fittings on all new cruiser designs, but except for the Omaha-class ships — which could be used in the role of destroyer flotilla leaders as in the IJN — the tubes were removed from all US cruisers in the mid 1930s. This move was not the result of a desire to reduce top-weight, as all the early Treaty cruisers came in under weight, but on the grounds that their tactical deployment did not require them, cruisers being reserved for gunfire support of destroyer flotillas.