Выбрать главу

Стэнли выиграл, потому что Тран и его команда после серии неудач изменили инструкции и метод вождения. «Мы начали воспринимать Стэнли как ученика, а не как компьютер, — рассказал мне Тран. — Вместо того чтобы говорить: “В этой ситуации нужно предпринять следующее действие”, мы давали ему пример и начинали его тренировать». Например, команде никак не удавалось просто приказать автомобилю ехать с соблюдением определенного скоростного режима. «Нормальный человек, попав в выбоину, снизит скорость, — рассказал Тран. — Но робот не настолько умен. Он мог бы ехать со скоростью 50 км/ч навстречу своей гибели». Тран взял руль в руки и заставил Стэнли отмечать при прохождении трассы скорость движения и силу тряски, которую могла выдержать подвеска автомобиля. Стэнли внимательно «наблюдал» за реакцией Себастьяна в случае сужения дороги или в ситуациях, когда тряска становилась слишком сильной и возникала угроза поломки.

Стэнли учился водить машину так же, как и большинство из нас: не путем зазубривания правил дорожного движения или просмотра леденящих кровь фильмов на тему дорожной безопасности, а наблюдая за реальным миром с заднего сиденья. Этот процесс заставил Трана поразмыслить над тем, какими должны быть правила обучения. До сих пор они были достаточно просты: по этой дороге от точки А до точки B следует ехать, не превышая определенной скорости. Однако, ставя Стэнли в слишком жесткие рамки, исследователи провоцировали чрезмерную реакцию. Они не хотели, чтобы Стэнли напоминал аутиста (типа героя Дастина Хоффмана в фильме «Человек дождя»[24], который останавливается на середине перекрестка только потому, что сигнал светофора для пешеходов меняется на «Стоп»). А что случится при нарушении правил, ведь на дороге так часто бывает? Разумеется, случается всякое. Могут возникнуть миллионы непонятных ситуаций. Как нам нужно понять, преследует ли полицейская машина с включенными огнями нас или кого-то еще, Стэнли нужно было расшифровать сигналы загадочного мира дороги: что лежит на середине улицы — камень или пластиковый пакет? Что впереди на мостовой: «лежачий полицейский» или человек, упавший с велосипеда? Одни только ограничения на парковку в Нью-Йорке могли привести к тому, что Стэнли сломался бы от перенапряжения.

Все это уже само по себе сложно. А теперь представьте, что это происходит в типичной ситуации — на заполненных машинами улицах больших городов и пригородов. На момент моего знакомства с Траном он как раз разбирался с этой проблемой, готовясь к очередной гонке DARPA под названием Urban Challenge. Трасса была проложена по городу, а внедорожник Стэнли уступил место Джуниору, Volkswagen Passat 2006 года выпуска. Цель соревнования, заявленная DARPA, — «безопасное и точное автономное движение в потоке на скорости 30 км/ч», в том числе «заезд на оживленную трассу, проезд круговых перекрестков, понимание происходящего на загруженных перекрестках и объезд препятствий»{4}.

Мы не всегда действуем правильно, но большинство водителей без особых проблем совершает огромное количество сложных маневров, причем каждый день. Чтобы обучить этому робота, необходимо решить ряд несложных задач. Зато анализировать случайную ситуацию на дороге (чем мы обычно и занимаемся) чрезвычайно трудно. Для этого требуется не только распознавать объекты, но и понимать, каким образом они связаны друг с другом — причем не только в текущий момент, но и в будущем{5}. Тран использует пример водителя, подъезжа­ющего к «островку безопасности» или стоящей машине. «Если машина стоит, вы просто встаете в очередь за ней, — говорит он. “Островок безопасности” вы объезжаете. Люди считают, что мы узнаем “островок безопасности” с первого взгляда. Однако у нас нет технологии, позволяющей взять данные с камеры и распознать “островок”». По словам Трана, Джуниор не может определить тип препятствия на расстоянии свыше 40 метров — он просто понимает, что впереди что-то есть.

вернуться

24

«Человек дождя» (Rain Man) — фильм режиссера Барри Левинсона, снятый в 1988 году. Прим. ред.

вернуться

{4}

См.: Urban Challenge Rules (Arlington, Va.: Defense Advanced Research Projects Agency, 10 июля 2007 г.).

вернуться

{5}

Специалист по когнитивному изучению поведения Дональд Хоффманн указывает, что даже обычная для трафика сцена — стоящие на трех полосах автомобили — создает множество проблем для искусственного интеллекта (как было отмечено и в анализе, произведенном исследователем Скоттом Ричменом). Хоффман отмечает: «Ричмен столкнулся с несколькими достаточно очевидными проблемами: беспорядком, деревьями, раскачивающимися на ветру, пляшущими по дороге тенями, автомобилями, прячущимися за другими. Сложные системы анализа, одновременно фиксирующие несколько кадров с разных ракурсов, позволяют системе Ричмена отличать перемещения автомобилей от деревьев и теней... Система Ричмена может отслеживать движение машин сквозь тени, что довольно просто для людей, однако представляет проблему для систем компьютерной обработки данных. Не каждое визуально отмеченное движение может однозначно идентифицировать даже человек. Когда же мы пытаемся заставить компьютер делать то же самое, проблема становится еще более заметной». Из книги: Hoffman D. D. Visual Intelligence: How We Create What We See. N. Y. : W. W. Norton, 2000, с. 170.