Выбрать главу

Но если понимать проницание в смысле уничтожения одного тела при приближении его к другому, то я спрошу кого угодно: видите ли вы необходимость в том, чтобы какая-нибудь цветная или осязаемая точка уничтожалась, приближаясь к другой цветной или осязаемой точке? Не видите ли вы, наоборот, вполне ясно, что от соединения этих точек произойдет сложный и делимый объект, в котором могут быть различены две части, причем каждая из них сохраняет свое раздельное и обособленное существование, несмотря на свою смежность с другой частью. Пусть спрашиваемый призовет на помощь свою фантазию, представив, чтобы предупредить слияние и смешение этих точек, что они различного цвета. Синяя и красная точки, конечно, могут быть смежными друг с другом без всякого проницания или уничтожения, ибо если это невозможно, то что же станет с этими точками? Которая из них уничтожится – красная или синяя? А если оба цвета соединятся в один, то какой же новый цвет они произведут путем своего соединения?

Что главным образом дает повод к этим возражениям и в то же время делает столь трудным удовлетворительный ответ на них, так это присущая как нашему воображению, так и нашим чувствам немощь и неустойчивость, обнаруживающаяся при их применении к столь малым объектам. Поставьте на бумаге чернильное пятно и отойдите на такое расстояние, чтобы пятно это стало совершенно невидимым. Вы заметите, что по мере вашего возвращения и приближения пятно сперва будет становиться видимым через короткие промежутки, потом сделается видимым все время, далее получит только более сильную окраску без возрастания в объеме, а затем, когда оно увеличится до такой степени, что станет реально протяженным, воображению все еще будет трудно разбить его на составные части в силу трудности представить такой малый объект, как единичная точка. Эта неустойчивость влияет на большинство наших рассуждений относительно данного предмета и делает для нас почти невозможным понятным образом и в надлежащих выражениях ответить на многие вопросы, которые могут возникнуть по его поводу.

III. Многие из возражений против неделимости частей протяжения были взяты из математики, хотя на первый взгляд наука эта кажется скорее благоприятной для данной теории: противореча последней в своих доказательствах, она зато совершенно согласуется с ней в своих определениях. Таким образом, моей задачей в настоящее время должны быть защита определений и опровержение доказательств.

Поверхность определяется как длина и ширина без глубины, линия – как длина без ширины и глубины, точка – как нечто не имеющее ни длины, ни ширины, ни глубины. Все это, очевидно, совершенно непонятно при всяком ином предположении, кроме предположения о том, что протяжение составлено из неделимых точек, или атомов. Иначе как могло бы нечто существовать, не имея ни длины, ни ширины, ни глубины?

На этот аргумент было, насколько я знаю, дано два различных ответа, ни один из которых не является, на мой взгляд, удовлетворительным. Первый состоит в том, что объекты геометрии, т. е. те поверхности, линии и точки, отношения и положения которых она исследует, суть просто идеи в нашем уме и что объекты эти не только никогда не существовали, но и никогда не могут существовать в природе. Они никогда не существовали, ибо никто не станет претендовать на то, чтобы провести линию или образовать поверхность, вполне соответствующую данному определению. Они никогда не могут существовать, ибо мы из самих этих идей можем вывести доказательства их невозможности.

Но можно ли вообразить что-либо более нелепое и противоречивое, чем это рассуждение? Все, что может быть представлено посредством ясной и отчетливой идеи, необходимо заключает в себе возможность своего существования; и всякий, кто берется доказать невозможность существования чего-либо с помощью аргумента, основанного на ясной идее, в действительности утверждает, что у нас нет ясной идеи об этом, потому что у нас есть ясная идея. Напрасно искать какое-либо противоречие в том, что отчетливо представляется нашим умом. Если бы в этом заключалось какое-нибудь противоречие, оно совсем не могло бы быть представлено.

Таким образом, нет ничего среднего между допущением по крайней мере возможности неделимых точек и отрицанием их идеи; последний принцип и лежит в основании второго ответа на вышеизложенный аргумент. Было высказано мнение[8], что хотя невозможно представить длину без всякой ширины, однако с помощью абстракции без разделения мы можем рассматривать первую, не принимая в расчет второй, точно так же как мы можем думать о длине пути между двумя городами, не обращая внимания на его ширину. Длина неотделима от ширины как в природе, так и в наших мыслях; но это не исключает ни частичного их рассмотрения, ни объясненного выше различения разумом.

вернуться

8

L’art de penser.