Выбрать главу

А между тем метеорологи еще не сформулировали закона, связывающего воедино все причины, влияющие на погоду, да и измерить такие величины с надлежащей точностью в различных уголках Земли, а затем с предельной быстротой собрать полученные данные и обработать их далеко не просто. Вот и оказывается, что многие факторы, влияющие на погоду, не определены, а порой и не могут быть определены достаточно точно.

Вы, наверно, уже заметили, что климат и погода как его характеристика являются системами, и притом весьма сложными, с десятками подсистем и тысячами элементов. Точно определить взаимосвязь и количественные характеристики всех этих подсистем и элементов невозможно даже с помощью радиосвязи, передающей сведения на любые расстояния с молниеносной быстротой, и при содействии ЭВМ, способных просчитать миллионы данных за несколько минут. Понятие «вероятность», следовательно, отражает некоторую неопределенность, с которой вольно или невольно нам приходится считаться.

Если быть до конца откровенным, то я должен сказать, что мы живем в мире неопределенности. Наши категорические утверждения: «Высота Останкинской телебашни равна 536 м» или «Вес этой гири равен 1 кг», «Радиус Земли составляет 6371 км» — на самом деле дают огрубленное, упрощенное знание об объективной действительности. Правда, и в повседневной жизни и в науке такие упрощения и огрубления часто бывают оправданными, а во многих случаях даже необходимыми. Возьмите хотя бы второй закон Кеплера. Он позволяет довольно точно вычислять положение планет в Солнечной системе в любой момент времени, и все-таки я употребил оговорку «довольно точно», не сказал «совершенно точно», так как в действительности законы небесной механики основаны на определенных огрубленных моделях, на абстракциях, учитывающих лишь взаимодействие небольшого числа факторов.

В действительности, как показали астрономические наблюдения и измерения, планеты не двигаются вокруг Солнца по геометрически правильным эллипсам, а колеблются, вибрируют вокруг некоторой «средней» линии, ибо на них оказывают воздействие множество причин, влияние которых не учитывается законами Кеплера.

Под влиянием наших практических потребностей мы, как правило, отражаем в законах науки лишь наиболее устойчивые, постоянные и простые связи между объективными явлениями и процессами. Но, по мере того как в сферу научных исследований втягиваются все более сложные системы, мы чаще сталкиваемся с «неопределенностными» ситуациями, то есть с таким положением дел, когда мы не можем отвлечься, абстрагироваться от влияния неизвестных, неизученных или не поддающихся учету причин.

А между тем людям приходится постоянно действовать в условиях большей или меньшей неопределенности. Полководец часто разрабатывает план военных действий, не зная в точности сил и намерений врага. Ученый планирует высадку человека на другую планету, не имея всех необходимых сведений о поверхности и атмосфере этой планеты. Директор завода, рабочий, водитель автобуса, диспетчер на железной дороге, пешеход, пересекающий улицу, министр торговли, хирург, производящий операцию, сотни и тысячи раз принимают самые различные решения, не зная до конца всех возможных последствий и всех условий, необходимых для осуществления этих решений и действий. Естественно поэтому, что люди стремятся уменьшить неопределенность, а для этого им прежде всего необходимо ее оценить, необходимо сравнить различные последствия, определить «вес» или влияние различных неопределенных факторов, оценить их предполагаемые следствия.

Вот этим-то целям и служит понятие «вероятность». В обычном, повседневном языке, в бытовой деятельности мы говорим, что одно событие более вероятно, чем другое, или что одно весьма вероятно тогда, как другое почти невероятно, и т. д. Однако в науке, где требуется высокая точность, ограничиться такими расплывчатыми оценками нельзя, поэтому ученые стремятся разработать особые математические приемы, особые правила, определения и вычисления количественных оценок вероятностей различных событий и процессов.

Именно этим целям и служит особый раздел математики— теория вероятностей.

Теория вероятностей возникла в XVII веке благодаря трудам Паскаля, Ферма', Бернулли и др. В XVII, XVIII и XIX веках ею занимались многие крупные математики. Большой вклад в ее развитие в конце XIX и в XX веке сделали академики А. А. Марков, А. Н. Колмогоров и др.