Как вы помните, наука или, точнее, уже существующие, созданные научные знания выражаются в языке. Так как научное знание прежде всего должно удовлетворять критериям истинности, то единицы или элементы научного знания облекаются в форму отдельных высказываний-предложений. Эти предложения не разрознены, а связаны определенным образом в зависимости от того, какую роль они играют в научном познании, какую информацию об окружающем мире они несут.
Таким образом, наука в самом общем виде представляет собой систему истинных знаний, выдержавших определенную проверку, отвечающих специальным требованиям и содержащих в себе знания о тех или иных разделах,областях или фрагментах реального мира.
Как видите, мы снова сталкиваемся с понятием системы. Но на этот раз не в применении к объективному реальному миру, а в применении к самой науке.
Мы можем теперь без особых трудностей заметить, что наука представляет собой сложную систему, состоящую из различных подсистем, надстраивающихся друг над другом, образующих как бы этажи огромного сооружения. При этом каждый этаж взаимодействует с другими смежными этажами, влияет на них и, в свою очередь, подвергается различным влияниям.
Такие системы называются иерархическими (от греческого hierarchia; hieros — священный и агсЬё — власть) системами. Между элементами каждой подсистемы или каждого этажа существует разнообразное отношение. Различными являются и отношения между этажами. Значит, эта система содержит в себе целый набор различных структур и является многоструктурной.
Давайте теперь обозначим важнейшие структурные комплексы, основные этажи и межэтажные блоки в нашей системе, называемой «наука».
Как и всякое здание, здание науки строится с фундамента, так сказать, снизу. Этот фундамент науки образуется наблюдениями и экспериментами и, следовательно, состоит из эмпирических знаний.
Но самым главным, наиболее существенным для науки является верхний этаж, который называется теорией.
С него-то мы и начнем наш анализ.
Теория образует важнейшую подсистему научного знания.
Что же такое теория?
Как она устроена?
Как вы помните, теория образуется в первую очередь из законов, выражающих наиболее фундаментальные знания о самых глубоких и необходимых связях между изучаемыми явлениями. Эти знания не просто располагаются рядом друг с другом, а объединены определенными логическими отношениями, отношениями выводимости. Исходные фундаментальные законы теории возникают на основе обобщений или догадок — гипотез. Все остальные теоретические знания в рамках данной теории выводятся из фундаментальных законов по законам логики и математики.
Строя теорию в таких дисциплинах, как биология, ученые до сих пор чаще всего принимают в расчет содержание исходных фундаментальных законов и гипотез. Они, стало быть, опираются на содержательную логику. Однако в таких математизированных дисциплинах, как физика, механика или астрономия, одни законы выводятся из других преимущественно по правилам математики и математической логики.
Сама математика, по крайней мере в ее первоначальном варианте, как вы помните, строилась под диктовку практических задач.
Но по мере усложнения развития математики ученые-математики часто формулировали совершенно абстрактные математические задачи. Предположим, говорили они, что имеют место такие-то и такие-то обстоятельства, такие-то и такие-то условия и ограничения. Как в таком случае можно решить данную задачу? При этом математики часто не задумывались о прямом и непосредственном применении своих результатов к действительности. Их целью было разработать строгие, точные и непротиворечивые правила, позволяющие чисто формальным путем решать все однотипные задачи данного вида. Когда намеченная ими цель оказывалась достигнутой, это означало, что им удалось построить ту или иную математическую дисциплину, тот или иной раздел математики, то есть создать формальное математическое исчисление.
Ученый — физик, механик или астроном — сталкивался с практической, физической, механической или астрономической задачей, и если оказывалось, что взаимодействие объектов, набор условий и ограничений в этих практических задачах был в достаточной степени схож с абстрактными объектами, условиями и ограничениями, о которых размышляли математики, то естествоиспытатели охотно брали из арсенала математики уже готовое, проверенное математическое оружие — наборы готовых правил и формул.