Выбрать главу

Железо, сохраняющее магнитные свойства при удалении из магнитного поля, называется твёрдым. Оно не переходит в магнитное состояние с той податливостью, которая характерна для мягкого железа, но ковка или любой другой вид вибрации позволяет твёрдому железу под влиянием магнитной силы легче осуществлять переход в магнитное состояние и легче расставаться с этим состоянием при удалении намагничивающей силы. Магнитно-твёрдое железо обладает одновременно большей сопротивляемостью к изгибам и большей способностью к разломам.

Процессы ковки, прокатывания, растягивания и быстрого охлаждения способствуют повышению твёрдости железа, а процесс отжига способствует его размягчению.

И магнитные, и механические различия между сталью твёрдой и мягкой закалки гораздо больше, чем между твёрдым и мягким железом. Мягкая сталь намагничивается и размягчается почти также легко, как железо, зато самая твёрдая сталь служит наилучшим материалом для магнитов, которые мы хотели бы сделать постоянными.

Чугун, хотя и содержит больше углерода, чем сталь, не так хорошо сохраняет магнетизм.

Если бы удалось сделать такой магнит, у которого распределение намагниченности не изменялось бы под действием любой приложенной магнитной силы, этот магнит можно было бы назвать жёстко намагниченным телом. Единственным известным телом, удовлетворяющим этому условию, является проводящий контур, в котором поддерживается постоянный электрический ток.

Такой контур проявляет магнитные свойства, и поэтому он может быть назван электромагнитом; эти магнитные свойства не подвержены влиянию со стороны других магнитных сил в поле. К этому вопросу мы вернёмся ещё в IV части.

Всё же реальные магниты независимо от того, изготовлены ли они из закалённой стали или магнитного железняка, подвержены, как выяснилось, влиянию любой магнитной силы, приложенной к ним.

Для научных целей удобно различать постоянную и временную намагниченность, определив постоянную намагниченность, как существующую независимо от магнитной силы, а временную намагниченность, как зависящую от этой силы. Следует заметить, однако, что это различие не основано на знании внутренней природы намагничивающихся веществ - это только выражение гипотезы, введённой ради выполнения расчётов, относящихся к данному явлению. Мы вернёмся к физической теории намагниченности в главе VI.

425. Сейчас мы будем исследовать временную намагниченность в предположении, что намагниченность любой частицы вещества зависит только от магнитной силы, действующей на эту частицу. Эта магнитная сила может быть частично обусловлена внешними причинами, а частично временной намагниченностью соседних частиц.

Про тело, намагниченное посредством действия магнитной силы, говорят, что оно намагничено через индукцию, а про намагниченность такого тела говорят, что она индуцирована намагничивающей силой.

Намагниченность, индуцированная данной намагничивающей силой, в разных веществах различна. Она максимальна в самом чистом и мягком железе, где отношение намагниченности к магнитной силе может достигать значения 32 или даже 45 1.

1 Thalén, Nova Acta, Reg. Soc. Sc., Upsal, 1863.

Другие вещества, такие, как металлы никель и кобальт, плохо поддаются намагничиванию, и всё же под действием достаточно большой магнитной силы все вещества, как это было обнаружено, проявляют признаки полярности.

Когда направление намагниченности совпадает с направлением магнитной силы, как это имеет место в железе, никеле, кобальте и т.д., то такое вещество называется Парамагнитным, Ферромагнитным или просто Магнитным. Когда индуцированная намагниченность направлена противоположно магнитной силе, как это имеет место в висмуте и др., то про такое вещество говорят, что оно является Диамагнитным.

Во всех этих диамагнитных веществах отношение намагниченности к создающей её магнитной силе чрезвычайно мало: в случае висмута, являющегося наиболее сильным диамагнитным веществом из числа известных, оно равно около 1/400 000.

В кристаллических, напряжённых и органических веществах направление намагниченности не всегда совпадает с направлением создающей её магнитной силы. Связь между составляющими намагниченности вдоль осей, связанных с телом, и составляющими магнитной силы можно выразить системой трёх линейных уравнений. Мы покажем, что из девяти коэффициентов, входящих в эти уравнения, только шесть являются независимыми. Явления в телах такого рода фигурируют под названием Магнитокристаллических явлений.

При помещении в поле магнитной силы кристаллы стремятся установиться так, чтобы ось максимальной парамагнитной (или минимальной диамагнитной) индукции была параллельна линиям магнитной силы, см. п. 436.

В мягком железе направление намагниченности совпадает с направлением магнитной силы в точке, и при малых величинах магнитной силы намагниченность примерно пропорциональна ей. Однако с увеличением магнитной силы намагниченность возрастает более медленно и, как следует, по-видимому, из экспериментов, описанных в гл. VI, существует предельное значение намагниченности, которое она не может превысить при любой магнитной силе.

В приводимых далее некоторых элементах теории индуцированного магнетизма мы начнём с предположения о том, что намагниченность пропорциональна магнитной силе и направлена по одной линии с ней.

Определение коэффициента индуцированной намагниченности

426. Пусть ℌ - магнитная сила, определённая, как в п. 398, в каждой точке тела, а 𝔍 - намагниченность в этой точке; отношение 𝔍 к ℌ называется коэффициентом индуцированной намагниченности.

Обозначив этот коэффициент через ϰ, запишем основное уравнение индуцированного магнетизма:

𝔍

=

ϰℌ

.

(1)

Коэффициент ϰ положителен для железа и парамагнитных веществ и отрицателен для висмута и диамагнитных веществ. В железе он достигает значения 1600, по некоторым сведениям он велик также для никеля и кобальта, но во всех остальных случаях это очень маленькая величина, не превышающая 0,000 01.

Сила ℌ возникает частично благодаря действию магнитов, внешних по отношению к телу, намагничиваемому по индукции, а частично благодаря индуцированной намагниченности самого этого тела. И обе эти составляющие удовлетворяют условию существования потенциала.

427. Пусть 𝑉 является потенциалом, обусловленным внешним относительно тела магнетизмом, а Ω - потенциалом, связанным с индуцированной намагниченностью, тогда если 𝑈 есть истинный потенциал, обусловленный обеими этими причинами, то

𝑈

=

𝑉

+

Ω

.

(2)

Пусть проекции магнитной силы ℌ на оси 𝑥, 𝑦, 𝑧 равны α, β, γ, а проекции намагниченности 𝔍 - 𝐴, 𝐵, 𝐶, тогда согласно уравнению (1)

𝐴

=

ϰα

,

𝐵

=

ϰβ