Таксономия — это система категоризации. Если вы разрабатываете нейронную сеть, которая распознает текст, среди категорий должны быть буквы сами по себе, а также наборы прописных и строчных букв. Один пример следует категоризировать как букву «А», а также отдельно как прописную букву. Другой пример следует категоризировать как букву «с» и строчную букву. Совершенная нейронная сеть обладает достаточными познаниями по каждой категории и способна определять, соответствует ли новый пример определенной категории. Знания, которые необходимы для определения принадлежности того или иного символа данной категории, называются моделью.
Так же, как вы обычно не представляете какой-то особенный стул, встречая слово «стул», модели, которые выстраивает нейронная сеть, не изображаются в виде особых букв, которые попадаются вам в написанном тексте. Вместо этого они представляют собой идеализированную форму каждой буквы. Модель английской буквы S — это идеализированная криволинейная ее форма; она подобна тому, как вы представляете букву S в своем воображении. Чтобы нейронная сеть распознавала букву S, написанную разными шрифтами, имеющаяся модель должна быть достаточно комплексной, чтобы нейросеть могла распознать S среди других букв. Модель не может быть слишком специфической, иначе она не различит S, написанную шрифтом Bookman Old Style, S, набранную жирным Comic Sans MS, и S, написанную Arial Black. Чтобы нейронная сеть функционировала должным образом, в модели, содержащейся в ее нейронных связях, должна быть зафиксирована квинтэссенция буквы в абстрактном смысле.
Представьте, что произойдет с рассматриваемой нами нейронной сетью, если мы покажем ей цифру 5. Сможет ли она найти различие между буквой S и цифрой 5? Это зависит от совершенства модели. Если модель включает в себя концепцию того, что у цифры 5 есть острые углы в верхней части и плавный изгиб в нижней, а у буквы S плавные изгибы имеются и в верхней, и в нижней частях, в модели содержится достаточно знаний для того, чтобы правильно идентифицировать их.
Чтобы научить нейронную сеть должным образом распознавать букву S и цифру 5, требуются примеры, содержащие характеристики, которые проводят различие между двумя символами. Если нейронная сеть обучалась только на примерах с буквами без цифр, она не сможет отличить S от 5. Для эффективного обучения выбор примеров должен быть достаточно широким.
Выбор примеров, предоставляемых нейронной сети, и классификация образцов по степени соответствия модели — работа левого полушария головного мозга. Оно также анализирует сложность любой конкретной проблемы и оценивает потенциальные модели. Например, левое полушарие анализирует сходство между Б и 5 и понимает, что необходим по крайней мере еще один дополнительный уровень характеристик, чтобы различать эти похожие знаки. За распознавание паттернов нейронными сетями отвечает правое полушарие. После формирования моделей на основе образцов и тренировки нейронной сети распознавание паттернов и распределение по категориям происходит автоматически. И в компьютере, и в головном мозге человека этот процесс происходит почти мгновенно.
Левое полушарие головного мозга очень хорошо извлекает абстрактные модели из паттернов и образцов, устанавливает и выбирает категории. Правое полушарие прекрасно определяет, соответствует ли данный образец модели, определяющей категорию, и отлично их распознает.
Левое полушарие анализирует, а правое замечает.
Интегрированное обучениеВ головном мозге человека эти функции взаимосвязаны: каждая половина выполняет собственные задачи, а затем передает результаты своей деятельности другому полушарию. Рассмотрим, как начинающий трейдер знакомится с определенными паттернами.
На рис. 2.1 представлена идеальная модель паттерна «двойная вершина». Этот график демонстрирует значительный подъем цены, затем откат, а потом снова подъем до того же уровня, что и в прошлый раз. Именно такой график представляет трейдер, думая о паттерне под названием «двойная вершина».
Рис. 2.1. Паттерн «двойная вершина»
А теперь посмотрите на рис. 2.2. Все четыре приведенных здесь примера соответствуют модели паттерна «двойная вершина», но каждый имеет существенные особенности. На примерах А и В за первым пиком следует второй, еще более высокий. На примерах С и D вслед за первой высшей точкой идет более низкая.