— Да это и в самом деле проще иероглифов, — обрадовался Сева.
— Это не только проще, но это уже похоже и на наш способ написания чисел. Справа единицы, за ними десятки, потом сотни… Словом, все цифры становятся на свои позиции, как в строю. Поэтому этот способ и называется позиционным.
— Значит, мы записываем числа по позиционному способу? — спросила Таня.
— Конечно, — ответила Четвёрка. — И начало этому положено в Вавилоне.
— Понимаю, — добавил Сева, — у нас счёт вавилонский…
— Вот и неверно, — остановила его Четвёрка. — Счёт у нас не вавилонский, а свой, особенный. Ведь мы считаем по десятичной системе, ау вавилонян была шестидесятиричная!
— Это как же так? — спросил Сева.
— А вот как: возьмём какое-нибудь число, ну, например, 3662. В нашей системе двойка здесь обозначает число единиц, за ней стоит шестёрка — это число десятков, а следующая шестёрка — число сотен, наконец тройка — число тысяч.
Значит, это число можно бы написать и так:
3000 + 600 + 60 + 2 = 3662.
А у вавилонян всё совсем по-другому. Если бы они знали арабские цифры, они бы это число записали так:
1 1 2.
По их системе двойка, как и у нас, остаётся числом единиц — первый разряд. А вот стоящая слева от неё единица — это не число десятков, а число шестидесятков — второй разряд. А следующая единица — уже число 60 X 60 = 3600 — третий разряд. Заметьте, что между разрядами нужно обязательно оставлять свободное место, иначе можно легко запутаться, что, кстати, частенько случалось.
Таким образом, наше число по вавилонской системе выглядело бы так:
3600 + 60 + 2 = 3662.
Вот как они считали, — закончила Четвёрка.
— Ой, как трудно! Хорошо, что у нас так никто не считает! — воскликнула Таня.
— Ошибаетесь, — поправила её Четвёрка. — Вы тоже считаете так… иногда.
— Я? Никогда!
— А я вам сейчас напомню. Скажите, пожалуйста, сколько в часе минут?
— Минут? Шестьдесят.
— Так. А сколько в часе секунд?
— Сейчас скажу. Шестьдесят на шестьдесят… Три тысячи шестьсот, — сосчитала Таня.
— Вот видите. Вы же делите часы и минуты не на десять частей, а на шестьдесят! Значит, и вы считаете по шестидесяткам!
Таня только руками развела.
— Вот не знала, что у нас осталось что-то от Древнего Вавилона!
Музей Пушкина
— Где мы только не побывали сегодня! — задумчиво сказал Олег, когда мы возвращались в Арабеллу. — И в Риме, и в Китае, и в Египте, и у древних славян, и в Вавилоне, а Нулика так нигде и не нашли.
— Выходит, мы с вами были правы, — лукаво улыбнулась мне Четвёрка. — Но не беспокойтесь, друзья! Нулика мы обязательно найдём! На всякий случай заглянем в музей Пушкина.
— Как, у вас есть музей Пушкина? — изумились ребята. — Поэт в Арифметическом государстве? Какое он имеет к вам отношение?
— Пушкин был очень разносторонним человеком, — возразила Четвёрка. — Он прилежно изучал историю, любил музыку и интересовался нами, жителями Арабеллы.
В это время мы подошли к небольшому дому, украшенному портретом великого поэта.
Четвёрка с бантиком ввела нас в комнату, где не было ничего, кроме странного рисунка, висевшего на стене.
— Этот рисунок взят нами из рукописей Александра Сергеевича, — продолжала Четвёрка. — Дело в том, что с давних пор люди ломали головы над тем, откуда взялось начертание арабских цифр. Существует много всевозможных догадок. Пушкин тоже предложил свой остроумный домысел, который нам очень понравился. Он решил, что все десять арабских цифр, включая нуль, помещаются в этом магическом квадрате. Чтобы легче разобраться в его рисунке, взгляните сюда.
Четвёрка достала большую папку, которой мы вначале не заметили.
Там было десять листов. На каждом — всё тот же рисунок, но всякий раз жирная линия обрисовывала новую фигуру, в которой мы без особого труда узнавали какую-нибудь из наших цифр. Только пятёрка немного подгуляла — у неё не хватало хвостика.
Четвёрка с бантиком объяснила, что в древние времена у пятёрки хвостика не было. Он вырос несколько позже.
— Интересно! — сказал Олег. — Но можно ли считать, что предположение Пушкина верно?
— Многие его оспаривают. Но нам, арабелльцам, оно по душе. Приятно сознавать, что ты вышел из магического квадрата!