В 1953 г. ученым удалось выяснить, что гены образованы молекулами дезоксирибонуклеиновой кислоты, сокращенно ДНК. Этот биологический полимер состоит из цепочек нуклеотидов. Из поколения в поколение передается молекулярная программа синтеза белка, и чем сложнее эта программа, тем длиннее нить ДНК. Сейчас доказано, что у каждого вида организмов свое число ДНК на каждую клетку: оно повышается от вирусов к позвоночным. При этом за появление каждого конкретного признака ответствен определенный ген или несколько генов, которые являются частью ДНК, как отдельное слово на ленте телеграммы. Гены отличаются друг от друга последовательностью четырех нуклеотидов. В каждой ДНК одной клетки человека насчитывается примерно 3 млрд. нуклеотидов. Причем вся колоссальная информация умещается на «телетайпной ленте» длиной в 2—4 м — именно такова длина нити ДНК в одном ядре. Чтобы уместиться в ничтожно малый объем ядра, ДНК многократно скручивается, складывается. Все это в каждой клетке. А клеток в одном нашем мозге — 11 триллионов.
Как же читается записанная в ДНК программа жизни?
Жизнь — это деятельность клеток. Это многочисленные химические реакции в клетке, каждая из которых протекает под действием своего фермента (биологического катализатора белковой природы). Известно, что белки составляются в цитоплазме клетки, — в жидкости, которая окружает ядро. Задания, как строить белок, доставляются из ДНК с помощью молекул особой информационной, или матричной, рибонуклеиновой кислоты — мРНК. Информация с какого-либо участка ДНК переписывается в молекулу мРНК, которая направляется в цитоплазму клетки, где и образуется молекула нужного белка по плану строения, принесенному мРНК.
Белок делается из разных химических элементов в период между делениями клетки. Этот период называют (весьма неудачно) периодом покоя. В этот период молекула ДНК относительно выпрямлена, рыхло расположена в ядре и наиболее удобна для «чтения». Под электронным микроскопом она очень напоминает нитку бус. С наступлением периода покоя хромосомы теряют компактность, начинает «разматываться» нить жизни, открывается «книга памяти» ДНК, и клетка синтезирует белки, из которых состоит организм. В конце периода покоя начинается удвоение молекул ДНК и тем самым подается команда к делению клетки. Расположение молекул ДНК в ядре резко изменяется: ДНК спрессовывается, упаковывается в компактные хромосомы, которые являются как бы своеобразным контейнером для переноса молекул ДНК.
6.5. Мутации
На первый взгляд может показаться, что главный механизм наследственности чрезвычайно устойчив благодаря тому, что каждая вновь образованная клетка получает от клетки-родителя полный набор генов. Они будут управлять ростом и развитием «новорожденной», они же обеспечивают в нужный момент воспроизводство новой клетки с таким же набором генов. Однако это не всегда так. Наблюдения показывают, что генный аппарат клеток подвержен мутациям (изменениям) — самопроизвольным (спонтанным) и искусственным (индуцированным).
Частота самопроизвольных мутаций у организмов всех видов исключительно мала, они имеют случайный, ненаправленный характер. Другое дело — индуцированные. Они возникают гораздо чаще под воздействием факторов, называемых мутагенными. Это могут быть вирусы, некоторые химические соединения, ультрафиолетовое и, главным образом, рентгеновское и ионизирующее излучение — радиация.
Мутагенные факторы способны разрушить некоторые нуклеотиды молекул ДНК или значительно повредить их. В этих случаях говорят о генных мутациях. Когда под воздействием этих факторов разрывается цепочка молекул ДНК, повреждения относят к хромосомным мутациям. Мутация опасна тем, что с поврежденных молекул ДНК, как с испорченных страниц, снимаются новые, уже дефектные копии, содержащие неверную, искаженную «программу жизни». Организм может передать ее по наследству — так могут возникнуть наследственные заболевания, обусловленные как хромосомными, так и генными мутациями.
Из-за изменения количества хромосом возникают болезнь Дауна и синдром Шерешевского—Тернера. Болезнь Дауна, характеризующаяся умственной отсталостью, вызывается наличием лишней хромосомы. А синдром Шерешевского—Тернера, проявляющийся в замедлении развития, обусловлен отсутствием одной хромосомы. Эти болезни можно определить уже у новорожденных. Достаточно сделать анализ их крови.
Каждая клетка нашего организма содержит 46 парных хромосом (диплоидный набор), и лишь половые клетки, и мужские и женские, имеют только по 23 непарных хромосомы (гаплоидный набор). При образовании половых клеток хромосомы не удваиваются, а делятся на две группы, их число в клетке уменьшается в два раза (этот процесс и называется митозом, т. е. уменьшением). При слиянии половых клеток образуется одноклеточный зародыш, ядро которого содержит 46 хромосом: половина из них получена от отца, а другая половина — от матери. Поэтому-то все мы чем-то похожи на своих родителей.