Выбрать главу

Все это происходило по разным внешним и внутренним причинам. Сначала на них не обращали внимание, иногда даже «верили», что это какая-то игра случая, а затем серьезно занялись их изучением и обратили внимание на то, что во время работы машин некоторые их детали и агрегаты оказываются неуравновешенными. В качестве примера неуравновешенности можно привести вращение наждачного круга около своей оси. Если ось вращения полностью совпадает с геометрической осью диска, то никаких особых явлений при его вращении не произойдет. Если же ось вращения отстоит от геометрической оси хотя бы на ничтожное расстояние, то круг начнет «бить». Если же начать увеличивать обороты круга, то возрастет и биение, и в определенный момент силы сцепления материала окажутся меньше центробежной силы и круг разорвет.

То же самое явление происходит и со всеми вращающимися частями всех машин. Особенно ярко оно проявляется в паровой машине и в других машинах, основой которых служит кривошипно-ползунный механизм. Ведь даже если не рассматривать шатун, ось вращения кривошипа отстоит на значительном расстоянии от оси, проходящей через его центр тяжести. Значит, «биения» тут неизбежны, и поэтому вопросами уравновешивания паровых машин ученые и инженеры вынуждены были заняться вплотную, когда нежелательные помехи в связи с повышением скоростей значительно увеличились. А поскольку нет ни единой машины, в которой не было бы вращающихся частей, то, очевидно, уравновешивание вращающихся масс оставалось очень важной проблемой механики машин (впрочем, в некоторых машинах, например в центрифугах, научились использовать и свойство неуравновешенности вращающихся масс).

Обратим внимание еще на одно свойство машин. Оно было замечено еще в конце прошлого века, когда русский ученый Иван Васильевич Мещерский начал изучать механику переменных масс. Сперва это учение в основном применялось к движению ракет, хотя и сам Мещерский обращал внимание на некоторые его Применения к машинам. Как показали исследования советских ученых, в очень многих машинах оказалось необходимым учитывать изменения массы в процессе движения, поскольку в практике машиностроения встречаются механизмы со звеньями, имеющими переменную.

Кроме того, существуют механизмы с переменной массой, вибрационные механизмы, важнейшим движением которых являются колебания. С колебаниями ученые познакомились давно, их изучал еще Галилео Галилей. Христиан Гюйгенс изучал колебания применительно к часовому механизму, а Роберг Гук вообще считал, что все явления в мире сводятся к колебательным процессам.

Колебания как явление начали изучать в XVIII в. В сущности, если не учитывать колебания маятника, то первыми исследовались колебания струны. Затем перешли к расчету колебаний пружин, и уже в XIX в., когда вопросы прочности зданий и сооружений породили учение о сопротивлении материалов, начали изучать и колебания строительных деталей опять-таки с точки зрения их прочности. Физиками были изучены колебания в акустике, оптике, элекротехнике и, наконец, в радиотехнике. Все они в какой-то степени раньше или позже нашли свое место и в учении о машинах. Однако механические колебания деталей машин начали изучать значительно позже и сперва в связи с неуравновешенностью отдельных деталей и агрегатов, о которой речь была выше. Уже в начале XX в. было установлено, что колебания в машинах могут быть вредными как для людей, так и для самой машины, а кроме того, для сооружений, расположенных вблизи нее. Но тогда же заметили, что колебательные процессы можно также использовать для исполнения определенных технологических операций. На колебательном принципе строились «соломотрясы», «грохоты» и другие подобные машины.

Механические колебания могут быть свободными и вынужденными. Так, если раскачивать маятник сначала медленно, а затем все быстрее, то при возрастании числа толчков маятник начнет раскачиваться с возрастающей амплитудой, и при совпадении числа толчков с числом свободных колебаний маятника амплитуда достигнет максимума: случай совпадения периодов свободных и вынужденных колебаний называется резонансом. Если же маятнику передаются слишком быстрые колебания, то он практически остается в покое. Подобное явление наблюдается и в живом организме. Примером может служить напряжение руки человека, стремящегося сдвинуть слишком большой груз. При этом, несмотря на то что груз не сдвинулся, мускулы очень быстро начинают уставать вследствие того, что они выполняют работу внутри организма. Такая работа стимулируется очень быстрыми импульсами, и это действие сравнимо с явлением вынужденных колебаний.

Вибрации как вид движения, используемый в механизмах, нашли новое применение во второй половине нашего века. По мнению ученых, машины, основанные яа вибрационном принципе действия, определят развитие технологии будущего. Машины этого типа имеют характерные особенности: в их структуру обязательно вводятся упругие элементы для предотвращения последствий больших перегрузок.

Таким образом, машины могут работать в условиях различного рода динамических воздействий. По разным причинам — при неравномерной подаче рабочего тела, снижении или, наоборот, увеличении рабочей нагрузки — им приходится постоянно переходить из одного рабочего режима в другой, а это чревато тяжелыми последствиями. Поэтому вопрос о регулировании их работы ставился издавна и решался различным образом.

Существуют два рода причин, нарушающих равномерность движения машин: внутренне конструктивные и внешние, зависящие от неравномерности подачи рабочего тела и от изменения рабочей нагрузки. Для регулирования хода машин в первом случае обычно ставят маховики. Изображения маховиков можно найти в различных руководствах, вышедших еще два века назад. Пожалуй, первую справку о маховике опубликовал в 1810 г. французский инженер А. Гениво.Поего словам, «к вращающимся машинам добавляют одно или два очень тяжелых колеса (из литой стали), которые называются маховиками». Они служат для увеличения массы машины, что обеспечивает сохранение равномерности движения, когда действие двигателя или сопротивления прерывается и создает противодействие резкому изменению скорости, которое могло бы привести к поломке машины. Маховики устанавливаются на всех машинах, движение которых должно быть равномерным, а скорость — постоянной. В описании содержался совет рассчитывать маховики, умножая каждую элементарную массу на квадрат ее расстояния до оси, и придавать маховикам возможно большие размеры.

На протяжении полутора веков шли поиски оптимального расчета маховика. Как оказалось, эта задача не проста, и поэтому при ее решении пришлось вводить некоторые упрощающие задачу предположения. Так, первый метод расчета маховика предложил видный французский инженер, один из основоположников учения о сопротивлении материалов Анри Навье. Он окончил Политехническую школу и Школу мостов и дорог, а затем в них преподавал. По его предположению, к кривошипу, составляющему одно целое с маховиком, приложена некоторая постоянная сила, действующая извне попеременно в одну и в другую сторону. Коромысло и поршень он считал лишенными массы, а длину шатуна — бесконечно большой. Сам расчет проводился на основе закона живой силы.

Значительные усовершенствования в расчет маховика внес другой выпускник Политехнической школы и также затем преподававший в ней Гюстав Гаспар Кориолис. Исходя из уравнения движения машины, он составил графическое решение задачи о маховике. Он не принимал во внимание массы шатуна, и весь расчет поэтому сводился к расчету приведенных масс поршня и коромысла. Паровые машины с коромыслом занимали важное место в стационарных установках, а затем от этой конструкции постепенно отказались. Однако те принципы, которые положил Кориолис в основу своего расчета, оказались наиболее приемлемыми, и их повторил уже в начале нашего века австрийский механик Фердинанд Виттенбауэр.

В сущности, идея регулирования- хода машины с помощью маховика существовала еще до изобретения паровой машины. В частности, маховик встречается среди механических приспособлений Леонардо да Винчи, который применил его к станку, приводимому в движение с помощью рукоятки. Как уже говорилось, первые паровые машины служили для откачки воды из шахт, поэтому они были спарены с насосом и не требовали маховика по причине очень медленного действия. В тех же случаях, когда их пытались использовать в качестве двигателя каких-либо станков, роль маховика выполнял гидравлический трансформатор: поршень машины при помощи коромысла приводил в движение поршень насоса, подававшего воду на лопасти верхнебойного колеса, которое и обеспечивало равномерное вращение.