Выбрать главу

Первой машиной другого типа, т. е. электронной машиной, была ЭНИАК, построенная в США в 1945 г. В ее структуре были использованы электронные лампы, и это обстоятельство дало возможность значительно повысить быстродействие машины: в среднем оно в тысячу раз превышало скорость электромеханических машин.

Первая советская машина такого же типа — так называемая  малая  электронно-счетная   машина (МЭСМ) — была построена в 1950 г. в Киеве под руководством Сергея Александровича Лебедева. Через два года под его же руководством в Институте точной механики и вычислительной техники АН СССР была построена  большая   электронно-счетная  машина (БЭСМ). В первой машине использовались шесть тысяч электронных ламп, а скорость ее работы составляла в среднем пятьдесят операций в секунду.

Еще через год было начато серийное производство отечественных электронно-вычислительных машин. Первой машиной, запущенной в серию, стала «Стрела» с быстродействием около двух тысяч операций в секунду. В машине было использовано еще большее число электронных ламп.

В последующие годы над созданием новых типов машин работали несколько коллективов в разных городах страны. Некоторые из этих машин выпускались серийно. Особое распространение в те годы получила машина «Урал». Эта машина появилась в высших учебных заведениях, в научно-исследовательских институтах, на предприятиях. В машине было использовано восемьсот электронных ламп, а скорость ее работы составляла сто операций в секунду. Такими были первенцы первого поколения вычислительных быстродействующих машин. Несмотря на то что уже в конце 50-х годов были разработаны безламповые модели, совершенствование и сооружение ламповых машин продолжались еще вплоть до середины 60-х годов.

Первые транзисторные вычислительные машины были выпущены почти одновременно в 1958 г. в США, ФРГ и Японии. По вычислительным возможностям эти машины превосходили все выпущенные до того времени модели ламповых машин. Постепенно усложняется их структура, и в 60-х годах разрабатываются новые машины, основной идеей создания которых было мультипрограммирование, иначе говоря, многопрограммный принцип работы. Эти машины второго поколения обладали новыми характеристиками и по качеству работы, и по удобству в обращении с ними. В среднем по габаритам эти машины были раз в сто меньше машин первого поколения, они потребляли в сто раз меньше энергии, а их быстродействие возросло в тысячу раз.

Мультипрограммирование структуры означало, что машина могла одновременно выполнять команды различных программ, хранящихся в ее запоминающем устройстве. Весьма существенным было также и то, что значительно повысилась производительность труда. Это обеспечивалось и самой программой ^работы машины. Значительное повышение быстродействия вело к тому, что стоимость простоя машины постоянно возрастала. Поэтому введение мультипрограммирования дало возможность в случае необходимости приостановить решение задачи, избегая при этом дорогостоящего простоя машины.

Переход к машинам второго поколения происходил в основном в течение 4—5 лет, и к концу этого периода машины первого поколения уже оказались в меньшинстве, хотя некоторые из них и продолжали работать. При этом расширилось и поле их деятельности. Если первые ЭВМ применялись для решения сложных- математических задач, то теперь машины начинают решать и разнообразные хозяйственные задачи. Количественно эти задачи начинают превалировать. Так, к середине 60-х годов до 80% машин, работавших в капиталистических странах, использовались в составе различных информационных систем -— в банковском деле, в промышленности, на транспорте, в сфере обслуживания, в торговле. Это обстоятельство повлияло и на структуру машин, и на разработку соответствующего оборудования, и на разработку стандартных программ.

Кроме машин универсального назначения второго поколения, начата была и разработка конструкции таких машин, которые можно было бы включить в общую структуру крупных машинных устройств, в системах военной техники, в системах управления самолетом, в системах аэрокосмического назначения и управления непрерывными технологическими процессами.

В нашей стране первые безламповые машины («Сетунь») были созданы в 1959—1961 гг. Быстродействие их постоянно повышалось. Так, первая советская машина этого типа, запущенная в серийное производство («Раздан-2»), выполняла пять тысяч операций в секунду. С 1963 г. был начат выпуск машин типа «Минск», которые к 1968 г. увеличили свое быстродействие до шести с половиной тысяч операций в секунду.

В 1966 г. в Институте точной механики и вычислительной техники была построена машина БЭСМ-6, выполнявшая уже миллион операций в секунду. Машина была оборудована четырьмя независимыми пультами управления.

В том же году в Киеве в Институте кибернетики АН УССР под руководством Виктора Михайловича Глушкова была построена малая универсальная машина «Мир», а в 1969 г. был создан ее второй вариант. Здесь взаимодействие человека с машиной было упрощено для облегчения производства инженерных расчетов. Машина «Мир-2» включала уже устройство визуального отображения информации, в состав которого входили световое перо и экран на электроннолучевой трубке.

Для систем управления непрерывными процессами в конце 60-х годов были разработаны машины типа «Днепр». В частности, машина «Днепр-2», выполнявшая до пятидесяти тысяч операций в секунду, имела в своем составе центральное устройство обработки данных, управляющий комплекс, предназначенный для приема информации от управляемого объекта, и комплекс периферийных устройств.

Вскоре, однако, устарели и эти машины. Развитием науки и техники перед конструкторами вычислительных машин были поставлены и новые задачи. Достигнутых скоростей быстродействия было уже недостаточно. Для этого нужно было опять менять структуру машин. В качестве нового структурного элемента появляются интегральные схемы-пластинки площадью в несколько десятков квадратных миллиметров, на которых размещаются тысячи транзисторов, резисторов, конденсаторов, диодов и других составных элементов машин. Применение интегральных схем обусловило появление цифровых вычислительных машин третьего поколения, выполнявших более миллиона операций в секунду, с малыми габаритными размерами, с высокой надежностью действия. Объем памяти машин третьего поколения вырос по сравнению с машинами второго поколения в тысячи раз и во столько же раз снизилось потребление энергии. Еще большие возможности приобрели машины нового поколения, быстродействие которых достигло нескольких десятков и сотен миллионов операций в секунду. В этих системах с громадным объемом памяти диалог человека с машиной приобретает новые формы. В то же время габариты машин быстро падают, а управление ими существенно упрощается.

Так возникли машины нового качества, такие, которые смогли заменить некоторые элементы человеческой памяти и принять на себя часть его психической работы. Но следует отметить, и это весьма существенно, что машина все же остается машиной и ее назначение — помочь человеку и заменить его в тех операциях, которые по какой-либо причине находятся вне человеческих возможностей.

Для того чтобы применить вычислительные быстродействующие машины для управления производством, надо, чтобы и само производство достигло определенной степени организации, т. е. автоматизации всех основных производственных процессов и механизации трудоемких и тяжелых работ. Следует напомнить, что существует качественное различие между обычной технологической машиной и машиной автоматического действия. Автоматизация всех операций, производимых машиной, полностью выключает оператора из технологического процесса. При этом изменяется и взаимосвязь механизмов: становится возможным значительно сократить длительность простоя и перестроить выполнение технологических операций таким образом, чтобы максимально уплотнить рабочее время. За оператором остаются лишь функции контроля и обслуживания, и это обстоятельство оставляет возможности для дальнейшего совершенствования машины.