У Рудольфа было два сына: старший, тоже Рудольф, и Курт. Ни один из них не пошел по его стопам. Рудольф-младший стал известным врачом и руководителем клиники в Вене. Курт, в свою очередь, считается самым влиятельным логиком современности (вторым после Аристотеля) и одним из знаменитых мыслителей XX века. Их мать Марианна, немка по национальности, изучала литературу Австро-Венгрии и Франции. В отличие от супруга она была тонкой, художественно восприимчивой натурой, и, возможно, поэтому стеснительный и замкнутый Курт был очень привязан к ней. Многие биографы говорят, что когда матери не было дома, мальчик чувствовал себя немного потерянным. Стеснительность и погруженность в себя сохранились в нем на всю жизнь. Гёдель никогда не был душой компании, никто не хохотал над его шутками, но ему это и не было нужно. Самые яркие умы XX века обратили на него внимание благодаря не его шуткам, но идеям, которые изменили видение математики и, возможно, всей науки. В своей жизни он дружил с немногими, но очень интересными людьми — одним из самых близких его друзей стал Альберт Эйнштейн.
В школе Курт был блестящим учеником. Естественно, он преуспевал в математике и языках. Даже сегодня многие из тех, кто живет в Восточной Европе, хотя бы знают немного языки своих соседей: чешский, немецкий, несколько слов по-русски и так далее. Гёдель, считавший немецкий язык родным, не был исключением, но даже в этой многоязычной среде его страсть и способность к языкам были выдающимися. С юности он в совершенстве говорил и писал по-английски и по-французски, а в последующие годы в его библиотеке всегда было большое количество словарей и грамматик различных языков.
Когда Гёделю было шесть лет, он перенес ревматическую лихорадку, из-за которой несколько дней провел в постели. Физически он полностью выздоровел, однако через некоторое время природное любопытство побудило его почитать о перенесенной болезни, и мальчик узнал, что она может вызывать в качестве осложнения хроническую слабость сердца. Гёдель всю свою жизнь был убежден в том, что это случилось и с ним, хотя врачи неоднократно уверяли его в обратном. Более того, без каких-либо рациональных оснований всю оставшуюся жизнь он был уверен, что если его сердце охладится, то он умрет, и даже в самые жаркие дни ученый ходил в теплой одежде.
Через много лет брат Рудольф говорил, что этот кризис стал причиной глубокой ипохондрии — одной из самых заметных черт личности Курта. Возможно, именно страх перед болезнями всю жизнь вызывал у Гёделя многочисленные недомогания, из-за которых он неделями находился в угнетенном состоянии и вынужден был прерывать любую интеллектуальную деятельность.
В 1912 году, когда шестилетний Курт, еще ничего не знавший о логике, переживал первую серьезную болезнь, математика как наука также находилась в кризисе. И хотя на тот момент Гёдель еще даже не подозревал об этом, ему было предназначено решительно проявить себя в решении этой проблемы.
Кризис, в котором находилась математика в 1912 году, известный сегодня как кризис оснований, начался в 1902-м, за четыре года до рождения Гёделя, с очень короткого письма Бертрана Рассела своему коллеге немцу Готлобу Фреге.
Бесконечность всегда в возможности, а не в действительности.
Аристотель, «Метафизика»
Если не знать исторического контекста, невозможно понять, как письмо, уместившееся на одной странице, развязало спор, который длился потом более 25 лет. На самом деле письмо Рассела к Фреге было лишь камешком, который вызвал сход лавины, ждавшей в течение десятилетий. Исторический процесс, который привел к этому моменту, начался с эпохи Аристотеля, с появления понятия бесконечности — одного из самых странных, сложных и чудесных, созданных человеческой мыслью.
Что такое бесконечность? Что мы хотим сказать, когда утверждаем, что последовательность 1, 2, 3, 4, 5... бесконечна?
В IV веке до н. э. Аристотель утверждал, что мы можем ответить на этот вопрос двумя разными способами.
Чтобы представить себе первый способ, вообразим народ, которому было дано задание, передаваемое из поколения в поколение, — считать и записывать все числа последовательности 1,2,3,4,5... Смогут ли они когда-нибудь завершить эту работу? Нет, даже если посвятят этому заданию годы, десятилетия или тысячи миллионов веков. Каким бы ни было число, до которого дойдет счет, всегда можно дописать еще одно. Если они дошли до 100, есть 101, если дошли до 1000 — есть 1001, если дошли до квинтиллиона — есть квинтиллион плюс один. Они никогда не достигнут последнего числа, просто потому, что его не существует.