Психическое расстройство прогрессировало и в середине 1970-х годов превратилось в бред преследования. Гёдель жил с навязчивой идеей, что его хотят отравить. Доверял он только Адели и Моргенштерну и решительно отказывался принимать пищу, если Адель до этого ее не пробовала.
Оскар Моргенштерн скончался 26 июля 1977 года, через некоторое время Адели пришлось на шесть месяцев лечь в больницу, и Гёдель, оставшийся наедине со своими страхами и навязчивыми идеями, практически перестал есть. Его организм, и так не очень крепкий, быстро ослабел от истощения. Ученого положили в больницу в Принстоне, где он скончался вечером 14 января 1978 года. В заключении о смерти в качестве причины указано "недоедание и истощение, вызванные личными проблемами".
Но в некотором смысле Гёдель так и не умер; его работы, идеи, мысли, теоремы все еще живы; его методы доказательства изучаются и используются по сей день, и не будет преувеличением сказать, что их будут анализировать в течение веков.
Оскар Моргенштерн — экономист и математик. Родился в Силезии (сегодня — часть Польши) в 1902 году. Учился в университетах Вены, Гарварда и Нью-Йорка. В Вене посещал знаменитые семинары, организованные Карлом Менгером (профессором Венского университета), в которых также участвовал Гёдель. Во время Второй мировой войны эмигрировал в Принстон и уже в США в 1944 году совместно с Джоном фон Нейманом опубликовал книгу Theory of Games and Economic Behavior ("Теория игр и экономического поведения"), которая положила начало современной теории игр. Моргенштерн скончался в 1977 году в Принстоне, Нью-Джерси, США.
В книге "За гранью чисел" американский математик Джон Аллен Полос пишет:
"Логик математики Курт Гёдель был одним из интеллектуальных гигантов XX века, и если предположить, что наш вид выживет, возможно, этот ученый окажется в числе немногих наших современников, которых будут помнить еще тысячу лет. [...] Речь идет не о самоуспокоении математиков, хотя для представителей всех дисциплин характерна некоторая профессиональная близорукость. Просто это правда".
Хотя после 1950 года Гёдель публиковался очень мало, это не значит, что он перестал размышлять и писать. Ученый оставил внушительное число неизданных рукописей, посвященных в основном философии и теологии, с исследованиями, среди прочего, на тему существования Бога, переселения душ и анализа философских работ Готфрида Лейбница. Все эти рукописи — поскольку Гёдель не оставил инструкций о том, что делать с ними, — были унаследованы его супругой Аделью, которая, в свою очередь, перед смертью в 1981 году передала их библиотеке Института перспективных исследований, где они и хранятся.
Среди неизданных бумаг выделяется текст Гиббсовской лекции, которую Гёделя пригласили прочитать на ежегодной встрече Американского математического общества, состоявшейся в Провиденсе 26 декабря 1951 года. По свидетельствам, Гёдель ограничился тем, что быстро прочел подготовленную заранее рукопись и даже не предоставил права на вопросы и комментарии в конце, хотя его встречали громкими аплодисментами, вызванными редкой возможностью лично увидеть гения такого уровня.
В последующие годы Гёдель занимался тем, что исправлял и завершал рукопись с намерением опубликовать ее, однако ему так и не удалось придать ей форму, которая удовлетворяла бы его самого. В конце концов лекция была опубликована в 1994 году как часть сборника под названием "Курт Гёдель, неизданные очерки".
Чем так интересна Гиббсовская лекция? В ней Гёдель очень детально (больше, чем в любой другой своей работе) изложил собственное понимание философских следствий из своих теорем о неполноте. В этой лекции он утверждал: теоремы доказывают, что математический платонизм — правильная позиция философии математики.
Вопрос состоит в следующем: математика создается или открывается? Это человеческое творение, или ученые открывают факты, существующие во внешней реальности независимо от них?
Платонизм утверждает, что математические объекты имеют объективное существование, и работа ученых состоит в том, чтобы открывать характеристики этих объектов. Платон был уверен, что наши ощущения — только деформированное отражение высшей действительности, существующей в "мире идей". В этом самом мире живут и объекты, исследуемые математиками.
Знаменитая теорема Гёделя о неполноте показывает, что нет никаких формальных [синтаксических] методов доказательства, с помощью которых можно доказать все математические истины.