Доска китайских шахмат с исходной позицией фигур.
РИС. 1
Как мы уже сказали, на Гиббсовской лекции 1951 года Гёдель утверждал, что его теоремы о неполноте доказывают справедливость платонистической точки зрения.
Рассмотрим кратко аргументацию Гёделя. В разуме каждого из нас есть интуитивное представление о том, что такое натуральные числа. Мы понимаем, как определяются основные операции и каковы их основные свойства. Например, мы воспринимаем, что умножение 8 на 5 равносильно физической операции образования восьми столбиков с пятью объектами в каждом из них (рисунок 1).
РИС. 2
Следовательно, у нас есть мысленная модель натуральных чисел, их структуры, которую изучают математики. С другой стороны, первая теорема Гёделя о неполноте доказывает, что эта модель не может быть полностью охарактеризована синтаксическими методами, то есть если мы ограничимся синтаксическими методами рассуждения, всегда найдутся недостижимые истины. Синтаксических методов доказательства недостаточно, чтобы постичь все свойства модели, которую мы не способны понять семантически. Это предполагает, согласно Гёделю, что эта мысленная модель, эти сущности, которые мы называем натуральными числами, со всеми их свойствами и взаимоотношениями, существуют в платонической реальности, находящейся за гранью чистой лингвистики (рисунок 2).
Парадокс Бертрана Рассела был в конце концов решен благодаря переформулировке аксиом теории множеств, предложенной немецким математиком Эрнстом Цермело в 1908 году и улучшенной через несколько лет также немецким математиком Абрахамом Френкелем. Хотя существовали и другие аналогичные предложения (одно из них было представлено самим Гёделем), аксиоматическая теория Цермело — Френкеля (или ZF, как ее обычно называют) сегодня является теорией множеств по умолчанию.
1. Два множества равны, если они имеют в точности одни и те же члены.
2. Существует пустое множество.
3. При заданных х и у существует упорядоченная пара (х, у).
4. Объединение множеств — это также множество.
5. Существует по крайней мере одно бесконечное множество.
6. Любое свойство, которое можно выразить на формальном языке теории множеств, может быть использовано для определения множества.
7. При заданном множестве всегда существует множество, образованное всеми его подмножествами.
8. При заданном конечном или бесконечном семействе непустых множеств всегда существует множество, содержащее ровно один член каждого множества этого семейства.
9. Ни одно множество не является членом самого себя.
Ключевая аксиома для избегания парадокса Рассела — шестая, которая уточняет, на каких свойствах могут основываться определения множеств. Эта аксиома в сочетании с девятой позволяет доказать, что парадоксального множества Рассела просто не существует.
Выводы Гёделя были оспорены современными логиками, такими как Соломон Феферман или Пану Раатикайнен, утверждавшими, что аргументы Гёделя основываются на предположениях, справедливость которых можно оспорить (как тот факт, что в каждом человеческом мозге существует модель натуральных чисел).
Дело в том, что сегодня пока еще нет единодушного мнения о том, какая связь существует между теоремами Гёделя и природой математических объектов. В любом случае прошло чуть более 80 лет с момента публикации теорем Гёделя, а это небольшой срок для того, чтобы делать какой-то определенный математический вывод.
Во многих популярных книгах говорится, что теорема Гёделя о неполноте доказывает невозможность найти множество аксиом арифметики, которое позволило бы доказать все истины этой теории; но это утверждение на самом деле некорректно. Как мы уже много раз говорили, это правда, только если ограничиваться только методами доказательства, принятыми программой Гильберта. Однако существуют и другие методы.
Например, вспомним аксиомы Пеано, то есть аксиомы, относящиеся к натуральным числам и включающие в качестве первоначальных составляющих сумму, произведение и функцию последующего элемента.