Кроме того, в бейсболе есть статистическая строгость. Его гуру располагают огромным количеством информации, и практически вся она напрямую касается манеры игроков. Более того, эта информация имеет непосредственное отношение к результатам, которые эти гуру пытаются предсказать. Это может показаться очевидным, но, как мы увидим на страницах этой книги, люди, создающие оружие математического поражения, испытывают постоянный дефицит информации как раз о тех типах поведения, которые их больше всего интересуют. В результате они подставляют вместо информации ее подмену (прокси). Они проводят статистические корреляции между чьим-то почтовым кодом или манерой речи и способностью этого человека выплатить кредит или справиться с рабочими обязанностями. Эти корреляции дискриминационны, а некоторые из них и незаконны. Бейсбольные модели по большей части не используют прокси из-за того, что они располагают фактической информацией: мячами, страйками и хитами.
Но самое главное – поток этой информации постоянно обновляется благодаря статистике, собираемой с 12–13 игр ежедневно с апреля по октябрь. Специалисты по статистике могут сравнить результаты этих игр с предсказаниями своих моделей – и увидеть, где они были не правы. Возможно, они предсказали, что реливер-левша пропустит много хитов от бэттеров-правшей – а он в результате их разгромил. В этом случае статистики пытаются подправить свою модель и пристально изучают, как и почему они ошиблись. Возможно, это новый крученый мяч питчера повлиял на их статистику? Или этот питчер лучше играет по вечерам? Все, что они узнают, они снова загрузят в модель, чтобы еще тоньше настроить ее. Именно так работают модели, заслуживающие доверия. Они постоянно взаимодействуют с миром, который они пытаются понять или предсказать. Если условия меняются – модель должна меняться вместе с ними.
Посмотрев сейчас на бейсбольную модель с ее тысячами переменных, вы можете задуматься: как вообще можно сравнивать ее с моделью, использованной для оценки учителей в школах Вашингтона? Первая моделирует спортивную игру в мельчайших деталях и постоянно обновляется. Вторая, при всей ее таинственности, опирается из года в год на результаты горстки тестов. Можно ли вообще называть ее моделью?
Ответ – да. Любая модель, в конце концов, есть не что иное, как абстрактное представление какого-то процесса, будь то бейсбольная игра, цепочка поставщиков нефтяной компании, действия иностранного правительства или посещаемость кинотеатра. Загружена ли она в компьютерную программу или хранится в нашей голове, модель берет наши знания и использует их для того, чтобы предсказать будущие результаты процесса в разных ситуациях. Все мы держим в уме тысячи моделей. Они подсказывают, чего нам ожидать, и руководят нашими действиями.
Вот неформальная модель, которую я использую ежедневно. Будучи мамой троих детей, я сама готовлю еду – мой муж, милейший человек, каждый раз забывает посолить макароны. Каждый вечер, когда я начинаю готовить ужин на всю семью, я внутренне и интуитивно моделирую аппетит каждого домочадца. Я знаю, что один из сыновей любит курицу (но ненавидит гамбургеры), а другой ест только пасту (с дополнительной порцией тертого пармезана). Но я также принимаю во внимание то, что их аппетиты меняются в разные дни – поэтому в мою модель может вкрасться ошибка. В ней всегда будет неизбежный элемент неопределенности.
В мою модель вкладывается информация о моей семье, об ингредиентах, которые у меня уже имеются или мне доступны, а также моей собственной энергии, времени и амбициях. На выходе я получаю решение, что и как мне приготовить. Я оцениваю успех ужина степенью удовлетворенности моей семьи, а также количеством съеденного и тем, насколько еда была здоровой. То, насколько хорошо принимают приготовленную мной еду и сколько ее съедают, позволяет мне обновить свою модель к следующему приготовлению ужина. Обновления и уточнения делают модель динамической – так это называется в статистике.