Выбрать главу

Если вообще средний термин взят хоть в одной посылке во всём объёме, тогда имеется налицо то, что связывает больший термин с меньшим термином. Если же он не входит ни в большую посылку, ни в меньшую во всём объёме, то он не может выполнять своего назначения – быть соединительным звеном, потому что в таком случае больший или меньший термин относятся к чему-либо неопределённому, как в приведённом выше случае: N может быть внутри круга натуралистов, но может быть и вне этого круга. Вследствие этого не может получиться определённого заключения. Поэтому средний термин хоть в одной из посылок должен быть взят во всём объёме.

4. Термины, не взятые в посылках во всём объёме, не могут быть и в заключении взяты во всём объёме.

Для пояснения этого правила возьмём следующий пример:

Все преступники заслуживают наказания.

Некоторые англичане суть преступники.

Все англичане заслуживают наказания.

Очевидная ошибка в этом силлогизме получается вследствие того, что мы в заключении термин «англичане» берём во всём объёме, между тем как в посылке этот термин взят не во всём объёме. Мы бы сделали правильное заключение, если бы сказали: «некоторые англичане заслуживают наказания».

Возьмём другой пример, где ошибка не так очевидна:

Все историки беспристрастны.

Натуралисты не суть историки.

Натуралисты не суть беспристрастны.

Чтобы видеть, правилен ли этот вывод, изобразим силлогизм символически (рис. 21).

Историки (M) находятся в P (беспристрастные). О натуралистах сказано, что они не суть историки. Мы, следовательно, не имеем права помещать их в круге M; поэтому натуралистов мы можем поместить где угодно, лишь бы не в круге M, а если так, то, помещая S вне M, мы можем его поместить всё-таки в круге P. Вследствие этого может оказаться, что «натуралисты беспристрастны». В большей посылке термин «беспристрастный» взят не во всём объёме, так что историки должны составлять только часть тех, которые беспристрастны, а потому мы не имеем права исключать из числа беспристрастных и натуралистов. Ошибка в этом силлогизме получилась оттого, что в большей посылке термин «беспристрастный», как сказуемое обще-утвердительного суждения, взят не во всём объёме, между тем как в заключении, как сказуемое обще-отрицательного суждения, он взят во всём объёме. Другими словами, мы один раз говорим не обо всех, а другой раз обо всех. Такая ошибка называется ошибкой illiciti processi, недозволительное расширение большего термина, как в данном примере; недозволительное расширение меньшего термина мы имели в первом примере.

5. Из двух отрицательных суждений нельзя вывести никакого заключения. Возьмём пример, чтобы пояснить это правило:

Химия не есть гуманитарная наука.

Математика не есть химия.

Что следует из этих посылок? Обозначим (рис. 22) «химия» посредством M, «гуманитарные науки» – посредством P, «математика» – посредством S:

M должно быть вне P, S должно быть вне M. Как легко видеть, средний термин в этом силлогизме не связывает больший термин с меньшим, потому что он находится вне большего и меньшего терминов. Если M не соединено с P, а S не соединено с M, то S не может быть соединено с P, т.е. через средний термин нельзя установить никакой связи между большим и меньшим терминами.

6. Если одна из посылок отрицательна, то заключение должно быть также отрицательно, и наоборот, для получения отрицательного заключения необходимо, чтобы одна из посылок была отрицательна. Возьмём пример:

Ни одно M не есть P.

Все S суть M.

Раз P находится вне среднего термина M, то, очевидно, S, которое находится в M, не свяжется с P, а потому получится отрицательное заключение.

Таким образом, если у нас есть две посылки, из которых одна отрицательна, то мы не можем сделать утвердительного заключения.

7. Из двух частных суждений нельзя сделать никакого заключения.

Это ясно из предыдущих правил. Предположим, что эти частные суждения будут I и I; тогда окажется, что средний термин в обеих посылках будет не распределён как подлежащее и сказуемое частно-утвердительного суждения. Если мы будем стараться вывести заключение, то мы нарушим третье правило. В самом деле, пусть эти посылки будут:

Некоторые M суть P.

Некоторые S суть M.

В обоих этих суждениях средний термин не распределён. Следовательно, заключение не следует необходимо. Возьмём суждения I и O, например:

Некоторые M суть P.

Некоторые S не суть M.

Так как здесь одна посылка отрицательная, то и сказуемое P заключения должно быть распределено, между тем как в данных посылках P как сказуемое частно-утвердительного суждения не распределено. Следовательно, попытка сделать заключение нарушала бы правило 4.

Наконец, правило 8 формулируется так:

8. Если одна из посылок есть суждение частное, то и заключение также должно быть частным.

Если мы желаем получить общее заключение в том случае, когда в силлогизме одна из посылок частная, то нарушается третье или четвёртое правило.

В самом деле, пусть мы имеем силлогизм:

Все M суть P.

Некоторые S суть M.

Все S суть P.

В этом силлогизме нарушается правило 4. Или пусть мы имеем силлогизм:

Некоторые M суть P. Все S суть M.

Все S суть P.

В этом силлогизме нарушается правило 3.

Вопросы для повторения

Как определяется силлогизм? Какие части мы различаем в силлогизме? Какое различие между формой и содержанием силлогизма? В чём заключается аксиома силлогизма? Перечислите правила силлогизма и объясните при помощи примеров их применение.

Глава XIV

Силлогизм. Фигуры и модусы силлогизма

Возможные сочетания суждений в силлогизме. В предыдущей главе мы рассмотрели условия правильности силлогизмов. Рассмотрим теперь на примерах приложение этих правил. Мы будем брать по три суждения, которые могли бы составить силлогизм. Эти суждения должны быть или A, или I, или O, или E. Причём само собой разумеется, что для образования силлогизма они могут комбинироваться самыми различными способами. Например, мы могли бы иметь сочетание суждений AAO, EAI и т.п. Но мы должны исследовать, пользуясь вышеизложенными правилами, какие из этих сочетаний или соединений дают правильные силлогизмы.

Для того чтобы решить вопрос, какие сочетания дают правильные силлогизмы, мы должны предварительно решить вопрос, какие вообще возможны сочетания. Для этого мы поступим следующим образом. Возьмём сочетания AA, AE, AI, AO 4 раза и прибавим к этим сочетаниям A, E, I, O, получим:

AAA AEA AIA AOA

AAE AEE AIE AOE

AAI AEI AII AOI

AAO AEO AIO AOO и т.д;

Действуя аналогичным способом, мы можем получить 64 возможных сочетания.

Составив полную таблицу таких сочетаний, мы рассмотрим, руководясь правилами, приведёнными в прошлой главе, какие из этих сочетаний должны быть отброшены, как не соответствующие этим правилам, и какие из этих сочетаний должны быть оставлены, как дающие правильные силлогизмы.

Берём первое сочетание AAA. Это сочетание не противоречит всем восьми правилам.

Сочетание AAE противно правилу 6, потому что в заключении находится отрицательное суждение E; а чтобы это было возможно, нужно, чтобы одна из посылок была суждением отрицательным, между тем в нашем силлогизме AAE обе посылки положительные. Следовательно, данное сочетание оказывается не возможным.

Сочетание AAO противоречит правилу 6, потому что заключение отрицательное, в то время как посылки утвердительные.

Если таким способом исследовать все 64 случая, то останется только 11 сочетаний, которые дают правильные силлогизмы. Эти сочетания следующие: AAA, AAI, AEE, AEO, AII, AOO, EAE, EAO, EIO, IAI, OAO.

Мы поставили своей задачей решение вопроса, сочетание каких суждений может давать правильные силлогизмы. Казалось бы, что указанным способом мы разрешаем тот вопрос, который нас интересует, но в действительности это не так, потому что при составлении этих сочетаний нужно принять в соображение ещё положение среднего термина в посылках. В том силлогизме, который мы до сих пор рассматривали, средний термин в большей посылке является подлежащим, а в меньшей посылке – сказуемым. Но среднему термину мы можем придавать произвольное положение: мы можем средний термин сделать сказуемым в обеих посылках, или подлежащим в обеих посылках, или, наконец, сказуемым в большей посылке и подлежащим в меньшей. Сообразно с этим мы получаем так называемые четыре фигуры силлогизма, которые и изображены на прилагаемой схеме.