Итак, контейнер сделали двойным. Наружный контейнер взаимодействует с воздухом и тормозится им. Внутренний контейнер содержит в себе приборы, защищает их от перегрузок при ударах. Простое и элегантное решение…
Можно видеть, что это решение позволяет нам устранить противоречие: «Контейнер должен взаимодействовать с приборами для того, чтобы размещать их в себе, и не должен взаимодействовать для того, чтобы не тормозить приборы».
Новый контейнер, в котором откачан воздух и происходит невозмущенное падение приборов, мог быть получен нами и как средство устранения противоречия, связанного с шахтой. (Воздуха не должно быть в шахте для получения качественной невесомости, и воздух должен быть в шахте для того, чтобы не усложнять конструкцию).
Рассмотрим еще одну задачу с похожими условиями.
Задача 12-2.Космические орбитальные станции ближайшего будущего будут не только исследовательскими, но в первую очередь технологическими. С развитием космической техники основную массу экспериментов и работ, требующих невесомости, стали проводить на орбите. Там можно обеспечить любую длительность невесомости. Невесомость — основное качество, обеспечивающее конкурентные преимущества таких станций и интерес к ним. Качество этого товара — невесомости должно быть высоким. Но, оказывается, что абсолютной невесомости трудно добиться и на орбите. И здесь конструкторы перспективных космических цехов столкнулись с необходимостью бороться с ускорениями. Технологические модули, предназначенные для производства высокочистых веществ, планируется делать автономными и посещать их только для загрузки сырья и получения готовой продукции (ведь работа вентиляторов, холодильных агрегатов, перемещения людей по станции, даже биение сердца космонавтов отмечаются чувствительной аппаратурой и могут помешать получению продукции).
Но и автономное расположение технологических модулей не решает проблему полностью, ведь космические аппараты тормозятся в разреженных слоях атмосферы, которая достигает нескольких сотен километров. Не помогут и микродвигатели, ведь надо компенсировать весьма малые силы торможения, причем делать это с еще более высокой точностью. И вновь, как пятьдесят лет тому назад, возникает необходимость бороться с тормозящим действием воздуха.
И конечно, был предложен вариант решения, внешне очень похожий на уже известный нам: предлагается технологический модуль помещать в герметичную оболочку. Система слежения должна контролировать, чтобы оболочка и внутренний модуль не соприкасались. В процессе торможения оболочки модуль будет постепенно выдвигаться в ее носовую часть. Это плавное перемещение система управления будет парировать периодическим разгоном внешней оболочки.
Задача 12-3 о запайке ампул.Ампулы с лекарством запаивают, нагревая капилляр в пламени горелки. В промышленных масштабах ампулы, размещенные в кассетах, движутся на конвейере. Горелки плохо регулируются, пламя в какое — то время может оказаться избыточным и лекарство перегревается. Это брак. Незапаянные ампулы также считаются браком, ведь в них с воздухом обязательно попадут микроорганизмы и лекарство испортится. Как быть?
Рассмотрим ход решения этой задачи по АРИЗ-71, начиная с шага 2–3 и до шага 3–5.
2-3. Дана система для запайки ампул с лекарством, состоящая из горелок и пламени, конвейера и кассет. Пламя нагревает капилляр ампулы и запаивает его.
НЭ: Большое пламя перегревает лекарство. (Или — малое пламя не запаивает капилляр).
В АРИЗ-71 была введена рекомендация — если на шаге 2-3b мы имеем два варианта формулировки нежелательных эффектов, то целесообразно выбрать среди них тот, который соответствует более эффективному выполнению основной функции системы. Поскольку наша система создана для того, чтобы запаивать ампулы, выбираем вариант с большим пламенем, ведь при этом запайка происходит гарантированно. (В последующих версиях алгоритмов эта рекомендация была перенесена на техническое противоречие и выбор стали делать между двумя формулировками ТП).
Предположим, что среди имеющихся элементов (горелка, пламя, ампула с капилляром и лекарством, конвейер, кассета) нет ни одного легко изменяемого. В данном случае такое предположение нужно нам для того, чтобы рассмотреть еще один вариант работы алгоритма. Если оказывается, что нет ни одного элемента, который мы могли бы легко изменять то рекомендуется работать с неким абстрактным объектом, получившим условное название «внешней среды» (ВС). Понятие внешней среды очень интересно и эвристически ценно. Если по условиям задачи в исходной системе ничего нельзя менять (вернее, решающий не знает, как можно что?то изменить, не нарушив ограничения), то предлагается ход, позволяющий ввести нечто новое, не нарушив этих ограничений. Вводится не конкретный элемент (ведь мы еще не знаем, как он должен выглядеть и что должен делать), а абстрактный образ элемента, скрывающий в себе все требуемые функции. На это название без объекта и будет потом проецироваться конкретная ситуация, он будет размещаться в нужных нам областях пространства, к нему будут прикладываться требования, на него будут возлагаться ограничения.