Рис. 2. “Тензорный” треугольник Паскаля
В табл. 1 приведено сравнение трех оценок информационной емкости тензорных сетей для некоторых значений n и k. Первая оценка — nk — заведомо завышена, вторая —
Таблица 1.
Как легко видеть из таблицы, уточнение при переходе к оценке rn,k является весьма существенным. С другой стороны, предельная информационная емкость тензорной сети (число правильно воспроизводимых образов) может существенно превышать число нейронов, например, для 10 нейронов тензорная сеть валентности 8 имеет предельную информационную емкость 511.
Легко показать, что если множество векторов {xi} не содержит противоположно направленных, то размерность пространства L({x⊗k}) равна числу векторов в множестве {xi}.
Сеть (2) для случая тензорных сетей имеет вид
а ортогональная тензорная сеть
где rij-1 — элемент матрицы Γ-1({x⊗k}).
Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)
Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.
Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.
Тензорная степень Степень коррелированности Условия CAB CAC CBC CAB+CAC CAB+CBC CAC+CBC 1 0.74 0.72 0.86 1.46 1.60 1.58 2 0.55 0.52 0.74 1.07 1.29 1.26 3 0.41 0.37 0.64 0.78 1.05 1.01 4 0.30 0.26 0.55 0.56 0.85 0.81 5 0.22 0.19 0.47 0.41 0.69 0.66 6 0.16 0.14 0.40 0.30 0.56 0.54 7 0.12 0.10 0.35 0.22 0.47 0.45 8 0.09 0.07 0.30 0.16 0.39 0.37Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (
Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.
Сети для инвариантной обработки изображений
Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.
В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как sij. Элементами автокоррелятора Ac(S) будут величины
Автокорреляторная сеть имеет вид
Сеть (11) позволяет обрабатывать различные визуальные образы, отличающиеся только положением в рамке, как один образ.
Конструирование сетей под задачу
Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:
1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.
2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.