1. Пусть
Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.
2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:
Доказательство непосредственно вытекает из свойства 1.
3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.
Доказательство вытекает из свойства 2.
4. Если вектора a и b коллинеарны, то есть b = λa, то a⊗k=λka⊗k.
Следствие. Если множество векторов
5. Применение к множеству векторов
Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:
1. для любого iL существует j∈{1, …, k} такое, что αj=i;
2. для любого j∈{1, …, k} существует i∈L такое, что αj=i.
Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.
Предложение 1. Если вектор a представлен в виде
Доказательство предложения получается возведением
В множестве
Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.
Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.
Таким образом в множестве X содержится ровно 2n-1 вектор. Каждый вектор x∈X можно представить в виде
Теорема. При k<n в множестве {x⊗k} линейно независимыми являются
векторов.
Для доказательства этой теоремы потребуется следующая интуитивно очевидная, но не встреченная в литературе лемма.
Лемма. Пусть дана последовательность векторов
a1,a2=a¹2+a²2,a3=a¹3+a²3,…,am=a¹m+a²m
таких, что (ai,a²j)=0 при всех i<j и (a¹i,a²i)=0, a²i≠0 при всех i, тогда все вектора множества {ai} линейно независимы.
Доказательство. Известно, что процедура ортогонализации Грама приводит к построению ортонормированного множества векторов, а все вектора линейно зависящие от предыдущих векторов последовательности обращаются в нулевые. Проведем процедуру ортогонализации для заданной последовательности векторов.
1. b1=a1/||a1||
2. b2=(a2-(a2,b2))/||a2-(a2,b1)b1||. Причем a2-(a2,b1)b1 ≠ 0, так как (a1, a²2)=0, (a¹2-((a2,b1)b1,a²2)=0 и a²2≠0.
…
j.
Причем
и a²j≠0.
…
Доказательство теоремы. Произведем линейное преобразование векторов множества x с матрицей