1. Формирование задачника.
2. Установка параметров метода обучения.
3. Обучение нейронной сети.
4. Тестирование обученной нейронной сети (статистический тест).
5. Повторение этапов 2–4 для других методов обучения.
6. Анализ полученных результатов.
Методы обучения:
1. Градиентный с mParTan
2. Градиентный без mParTan
3. Случайный без mParTan
4. Случайный с mParTan
В отчет включаются все полученные результаты (число тактов при обучении сети и результаты статистического теста для всех четырех вариантов стратегии обучения). На основе анализа полученных результатов необходимо сформулировать рекомендации по использованию исследованных стратегий обучения.
Лабораторная № 5
Цель работы. Исследование влияния различных видов функции оценки на обучение нейронных сетей
Используемые программы. Лабораторная выполняется на программе Sigmoid.
Задание. В лабораторной работе требуется обучить нейронную сеть решению задачи распознавания пяти бинарных изображений с использованием различных функций оценки и провести сравнение по скорости обучения и надежности работы обученной сети. Основные этапы выполнения работы те же, что и для лабораторной работы 4.
1. Формирование задачника.
2. Установка параметров оценки.
3. Обучение нейронной сети.
4. Тестирование обученной нейронной сети (статистический тест).
5. Повторение этапов 2–4 для других методов оценки.
6. Анализ полученных результатов.
Исследуемые оценки:
1. Метод наименьших квадратов.
2. Расстояние до множества с уровнем надежности 0,1.
3. Расстояние до множества с уровнем надежности 1,8.
В отчет включаются все полученные результаты (число тактов при обучении сети и результаты статистического теста для всех видов оценки). На основе анализа полученных результатов необходимо сформулировать рекомендации по использованию исследованных оценок.
Лабораторная № 6
Цель работы. Контрастирование нейронных сетей
Используемые программы. Лабораторная выполняется на программе Sigmoid.
Задание. В лабораторной работе требуется провести контрастирование обученной нейронной сети с целью минимизации числа синаптических связей и сравненить надежности функционирования контрастированной и неконтрастированной нейронных сетей. Основные этапы выполнения работы:
1. Формирование задачника.
2. Обучение нейронной сети.
3. Тестирование обученной нейронной сети.
4. Контрастирование обученной нейронной сети.
5. Тестирование контрастированной нейронной сети.
6. Анализ полученных результатов.
Контрастирование нейронной сети проводится до получения минимальной нейронной сети — сети из которой нельзя удалить ни одной связи.
В отчет включаются все полученные результаты (число тактов при обучении сети и результаты статистического теста для всех видов оценки). На основе анализа полученных результатов необходимо сформулировать рекомендации по использованию исследованных оценок.
Лабораторная № 7
Цель работы. Сравнить сети использующие различные виды нейронов.
Используемые программы. Лабораторная выполняется на программах Sigmoid, Pade, Sinus.
Задание. Необходимо обучить нейронные сети, реализованные в программах Sigmoid, Pade и Sinus с максимальным уровнем надежности. Для программы Sigmoid (сигмоидная сеть) максимальным, но недостижимым уровнем надежности является 2. На практике удается обучить сеть с уровнем надежности 1,9–1,98. Для Паде сети (программа Pade) нет ограничения на достижимый уровень надежности, однако в программе установлено ограничение на уровень существенности — 200. В программе Sinus (сеть с синусоидной характеристикой) максимальный уровень надежности 2 является достижимым.
Для каждой сети определяются следующие показатели:
• число тактов обучения;
• результат статистического теста.
Все полученные результаты включаются в отчет. Отчет должен содержать рекомендации по использованию всех видов сетей.
Вопросы к экзамену
1. Основные принципы инженерного направления в нейроинформатике
2. Классическая сеть Хопфилда. Ее свойства и методы расширения возможностей.
3. Проекционная сеть ассоциативной памяти