Числовые признаки
При предобработке численных сигналов необходимо учитывать содержательное значение признака, расположение значений признака в интервале значений, точность измерения значений признака. Продемонстрируем это на примерах.
Содержательное значение признака. Если входными данными сети является угол между двумя направлениями, например, направление ветра, то ни в коем случае не следует подавать на вход сети значение угла (не важно в градусах или радианах). Такая подача приведет к необходимости «уяснения» сетью того факта, что 0 градусов и 360 градусов одно и тоже. Разумнее выглядит подача в качестве входных данных синуса и косинуса этого угла. Число входных сигналов сети увеличивается, но зато близкие значения признака кодируются близкими входными сигналами.
Точность измерения признака. Так в метеорологии используется всего восемь направлений ветра. Значит, при подаче входного сигнала сети необходимо подавать не угол, а всего лишь информацию о том, в какой из восьми секторов этот угол попадает. Но тогда имеет смысл рассматривать направление ветра не как числовой параметр, а как неупорядоченный качественный признак с восемью состояниями.
Расположение значений признака в интервале значений. Следует рассмотреть вопрос о равнозначности изменения значения признака на некоторую величину в разных частях интервала значений признака. Как правило, это связано с косвенными измерениями (вместо одной величины измеряется другая). Например, сила притяжения двух небесных тел при условии постоянства массы однозначно характеризуется расстоянием между ними. Пусть рассматриваются расстояния от 1 до 100 метров. Легко понять, что при изменении расстояния с 1 до 2 метров, сила притяжения изменится в четыре раза, а при изменении с 99 до 100 метров — в 1.02 раза. Следовательно, вместо подачи расстояния следует подавать обратный квадрат расстояния c'=1/c².
Простейшая предобработка числовых признаков
Как уже отмечалось в разделе «Различимость входных данных» числовые сигналы рекомендуется масштабировать и сдвигать так, чтобы весь диапазон значений попадал в диапазон приемлемых входных сигналов. Эта предобработка проста и задается следующей формулой:
где [a,b] — диапазон приемлемых входных сигналов, [cmin,cmax] — диапазон значений признака c, c' — предобработанный сигнал, который будет подан на вход сети. Предобработку входного сигнала по формуле (1) будем называть простейшей предобработкой.
Оценка способности сети решить задачу
В данном разделе рассматриваются только сети, все элементы которых непрерывно зависят от своих аргументов (см. главу «Описание нейронных сетей»). Предполагается, что все входные данные предобработаны так, что все входные сигналы сети лежат в диапазоне приемлемых входных сигналов [a,b]. Будем обозначать вектора входных сигналов через xi, а требуемые ответы сети через fi. Компоненты векторов будем обозначать нижним индексом, например, компоненты входного вектора через xij. Будем полагать, что в каждом примере ответ является вектором чисел из диапазона приемлемых сигналов [a,b]. В случае обучения сети задаче классификации требуемый ответ зависит от вида используемого интерпретатора ответа (см. главу «Оценка и Интерпретатор ответа» ).
Нейронная сеть вычисляет некоторую вектор-функцию F от входных сигналов. Эта функция зависит от параметров сети. Обучение сети состоит в подборе такого набора параметров сети, чтобы величина