Косвенное доказательство устанавливает истинность доказываемого тезиса, исследуя не самый доказываемый тезис, а некоторые другие положения. Эти положения так связаны с доказываемым тезисом, что из установления их ложности необходимо вытекает истинность доказываемого тезиса. Поэтому в косвенном доказательстве задача состоит в выяснении ложности положений, обусловливающей истинность доказываемого тезиса.
Косвенное доказательство бывает или разделительным, или апагогическим.
В разделительном косвенном доказательстве доказываемый тезис рассматривается как одно из некоторого числа предположений, в своей сумме исчерпывающих все возможные по данному вопросу предположения. Доказательство состоит в том, что все эти предположения опровергаются, кроме одного, которое и есть доказываемый тезис. Тем самым доказывается, что этот тезис, как единственное из всех возможных предположений, которое осталось неопровергнутым, должен быть истинным.
Если, например, установлено, что имело место преступление, которое непосредственно могли совершить только лица А, В, С и D, и если, кроме того, установлено, что ни В, ни С, ни D непосредственно не совершили его, то тем самым доказано, что преступление непосредственно совершило лицо А.
Условием логической безупречности разделительного доказательства является полнота перечисления и, соответственно, полнота исследования всех возможных по данному вопросу предположений. Только при этом условии опровержение всех рассмотренных предположений, кроме одного, означает необходимую истинность этого последнего оставшегося неопровергнутым предположения. Так, возвращаясь к рассмотренному примеру, необходимо заметить, что виновность А в непосредственном совершении раскрытого преступления необходимо вытекает из опровергнутой виновности В, С и D лишь при условии, если установлено, что только А, В, С и D могли непосредственно совершить данное преступление. Но если бы оказалось, что по обстоятельствам данного случая преступление могло быть непосредственно совершено также и лицом Е, то опровержение виновности В, С и D, разумеется, ещё не доказало бы виновности А, так как виновным может оказаться Е.
В математических науках разделительное доказательство применяется очень часто, так как в этих науках особенно легко достижимо исчерпывающее перечисление всех видов данного рода или всех предположений, возможных в исследуемом случае.
В науках нематематических применение разделительной формы доказательства обусловлено возможностью исчерпывающего перечисления всех возможных положений, одним из которых является доказываемый тезис. В этих науках часто невозможно заранее перечислить и учесть все эти положения. В таких случаях, если пренебречь тем, что не имеется необходимых условий для строгого разделительного доказательства, легко возникает ошибка необоснованного заключения, которое может оказаться ложным. Но даже если бы выведенное заключение случайно оказалось соответствующим действительности, истинность его осталась бы в данном случае недоказанной.
Апагогическое косвенное доказательство устанавливает истинность доказываемого тезиса посредством опровержения противоречащего ему положения. Из ложности последнего следует — на основании закона исключённого третьего — истинность доказываемого тезиса. В математических науках апагогическое доказательство принимает особую форму, называемую обычно «доказательством от противного». Название это, общепринятое в математике. не точно, так как в этих доказательствах истинность доказываемого тезиса выводится из ложности не противного, а противоречащего ему тезиса[24].
Косвенное апагогическое доказательство имеет две части. Сначала при помощи особого приёма доказывается ложность тезиса не-p, противоречащего доказываемому тезису р. А именно: предполагают, что тезис не-р, противоречащий доказываемому, — истинен. Этот противоречащий тезис (не-p) вводится в число оснований доказательства (а, b, с, d), о которых известно, что они истинны. Затем из получившихся таким образом оснований (а, b, с, d..., не-p) развивают ряд необходимо следующих из них выводов. Выводы эти развивают до тех пор, пока не получится какое-нибудь заключение, противоречащее одному из оснований, например основанию а. Так как два противоречащих друг другу положения не могут быть — по закону противоречия — оба сразу истинными, и так как известно, что положение а — истинно, то заключение не-a необходимо должно быть ложно. Итак, развивая выводы из принятых оснований, мы получили ложное заключение не-a. Но заключение не-a может быть ложно или оттого, что ложно какое-нибудь из оснований, на которые опирается не-а, или оттого, что логическая связь между основаниями (а, b, с, d..., не-p) и заключением (не-а) — неправильная. Так как в нашем случае логическая связь (по предположению) — правильная, и так как известно, что все основания, кроме не-р,— истинны, то ложным должно быть положение не-р.
24
Из ложности суждения не следует истинность противного ему суждения, так как закон исключённого третьего к противным суждениям неприменим.