Выбрать главу

Для стали ВНС-2, являющейся основным материалом цельносварных отсеков, были разработаны режимы и присадочные материалы для сварки без проведения последующей термообработки. Применение стали ВНС-2, отличительной особенностью которой являются незначительные деформации при сварке, (что связано с низкой температурой мартенситного превращения), позволило изготовлять крупногабаритные сварные конструкции сложной формы с высокой точностью и дало возможность выполнять ремонтные подварки практически в полевых условиях.

Для силового набора планера (лонжероны, балки) были освоены крупногабаритные полуфабрикаты из стали ВКС-3, режимы термообработки, обеспечивающие надёжную работоспособность деталей при температурах до 450°С. Ряд силовых шпангоутов и балка основной стойки шасси были выполнены из стали 30ХГСН2А, обработанной на прочность 1600-1800 МПа, при этом были проведены глубокие исследования режимов термообработки, работоспособности стали с учётом концентрации напряжений и условий нагружения деталей (В.В. Сачков, С.В. Лепнев, М.Ф. Алексеенко, Ф.Ф. Ажогин, И.Г. Покровская).

Впервые для ресурсных деталей - цилиндры амортизатора, штоки, балка передней стойки шасси - была создана высокопрочная сталь ВКС-210 с прочностью 2100 МПа (Я.М. Потак, О.К. Ревякина, В.В. Сачков). Для этих крупногабаритных деталей из стали ВКС-210 были разработаны технологии вакуумной выплавки слитков, деформации полуфабрикатов, специальные режимы термообработки заготовок и деталей, обеспечивающие работоспособность узлов шасси.

Разработанные материалы обеспечили создание надёжной конструкции узлов изделия "100" и их высокую весовую эффективность.

Была отработана технология сварки сплава ВНЛ-3 и его сочетаний с ВНС-2, проведены исследования по свариваемости сплавов ВТ-21 Л конструкций больших размеров (под руководством В.А. Костюка).

Проводились работы по отработке технологии пайки неразъемных соединений из разнородных материалов применительно к трубопроводным системам (под руководством А.П. Световидова), а совместно с ТМЗ исследованы вибропрочность и работоспособность сварных трубопроводов из титановых сплавов, применяемых в трубопроводах, работающих под внутренним давлением.

В конструкции планера самолёта Т-4 впервые в отечественной практике были применены принципиально новые для того времени теплостойкие полимерные материалы: стеклопластики радиотехнического назначения, герметики,клеи,топливостойкие резины и уплотнители и др., способные длительно работать при температурах до 250- 300°С, соответствующих экстремальным рабочим условиям полёта.

Эти материалы, разработанные ВИАМом совместно с институтами химической промышленности и Академии наук СССР, с успехом были применены в конструкциях антенных обтекателей, топливных баков, остекления и других элементов фюзеляжа самолёта.

В связи с огромным значением, которое придавалось научно-исследовательским работам по созданию и освоению новых топливостойких полимерных материалов, решением Правительства СССР был создан Межведомственный научный совет по топливостойким полимерным материалам для сверхскоростных самолётов под научным руководством академика Кузьмы Андриановича Андрианова. Его заместителем был назначен начальник ВИАМа Алексей Тихонович Туманов.

Одной из важнейших и несомненно сложных задач, возникших при проектировании и создании уникальной реактивной машины, была проблема носового антенного обтекателя. К его конструкции, помимо требований по параметрам радиотехнических свойств, предъявлялись требования по высоким прочностным характеристикам при нагреве конструкции до температур 300-350°С. Сотрудниками ВИАМа (В.В. Павлов, Б.А. Киселёв, О.К. Белый, И.Ф. Давыдова, В.А. Косарев) были разработаны высокотермостойкое полиамидное связующее (совместно с НИИПМ) и стеклотекстолит на его основе, сохраняющий необходимый комплекс радиотехнических и прочностных свойств при воздействии высоких температур (300-400°С).

Пришлось разрабатывать специальные оригинальные соты на основе стеклянных наполнителей, пропитанных тем же термостойким связующим. Была создана пятислойная конструкция обтекателя, в которой средний слой с толщиной стенки до 1,5 мм нёс основную силовую нагрузку. Для защиты внешней поверхности обтекателя сотрудниками ВИАМ Э.К. Кондрашовым и Л.А. Бутомо было разработано термостойкое, атмосферостойкое кремнийорганическое покрытие.