Выбрать главу

Например, два человеческих тела при расстоянии между ними в 1 м притягиваются с силой примерно в одну сороковую долю миллиграмма-силы. Это менее одной миллиардной доли той силы, которая нужна, чтобы сдвинуть нас с места. Два корабля массой 25 000 т каждый на расстоянии 100 м притягиваются с ничтожной силой 4 Н, и нелепые объяснения столкновения судов из-за их взаимного притяжения лишены смысла.

От силы притяжения не спасают никакие преграды или экраны. Хотя многие мечтали найти такой экран: то и дело слышишь, что, дескать, в XXI в. ученые найдут средство избавляться от гравитации. Уже чертят проекты домов без фундамента и машин-гравилетов, летающих без топлива.

Поиски эти не новы – еще английский фантаст Герберт Уэллс воспользовался идеей «гравитационного щита», якобы изготовленного из особого материала, названного в честь автора – изобретателя Кэвора – кэворитом. Если этот щит подвести под какой-нибудь предмет, то он освободится от притяжения Земли и будет притягиваться только небесными телами, т. е. взлетит. Герои Уэллса сооружают межпланетный корабль, покрытый кэворитом; открывая и закрывая соответствующие шторы, они притягиваются к той части пространства, куда хотят лететь, и таким образом перемещаются в космосе.

Доводы фантаста звучат убедительно: мы знаем, что экран из какого-нибудь проводника (например, лист металла) является непроницаемым для электрического поля; сверхпроводник выталкивает из себя магнитное поле и т. д. Тем более появившееся в печати сообщение об измерениях французского астронома Аллена подтвердили, что Луна, заслоняя нас от Солнца, создает и некоторую «гравитационную тень». Но оказалось, что эта «тень» явилась лишь ошибкой приборов.

Высказывались мысли, что гравитация, дескать, действует только на небесные тела, но не на нас с вами. Так, английский физик Генри Кавендиш построил специальные очень точные так называемые крутильные весы и одним из первых в 1798 г. измерил гравитацию на Земле. В этих весах на тонкой и прочной нити на коромысле были подвешены грузы, которые притягивались двумя массивными шарами из свинца массой 50 кг (рис. 28). Прибор Кавендиша был заключен в воздухонепроницаемую камеру, а движение коромысла улавливалось оптическими приборами. Так была определена «гравитационная постоянная», которая оказалась равной 6,67·10 – 11 Н⋅м2/кг2, иначе говоря, два шара массой 1 000 кг каждый, находящиеся на расстоянии 1 м друг от друга, притягиваются с силой 6,67 стотысячных долей ньютона!

Рис. 28. «Крутильные весы» Г. Кавендиша для определения гравитации

Вот как слабы, ничтожны гравитационные силы, и вместе с тем именно они и «движут миром», определяя полет планет, звезд, комет и других небесных тел. Падение тел на Земле, кстати, тоже дело «рук» гравитации, так что она не только всемирна, но и вездесуща!

Чем сильны слабые силы гравитации?

Вот тут-то мы подходим к пониманию основного закона движений Ньютона – второго. Уже понятно, что тела, предоставленные самим себе, движутся по прямым, причем равномерно. Уже знаем и о том, почему сворачивают со своего естественного пути планеты и кометы, попадая в зону действия сил гравитации. Но как связать все это с нашим земным, обыденным движением тел? Каким же образом они движутся, и как силы управляют этим движением?

Движение тел под действием сил определяет второй, или, как его называют, основной закон Ньютона. Выражаясь современным языком и делая его попроще и доступнее для понимания, мы формулируем его так:

«Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение».

Вот так коротко и, кажется, просто выразилось то, что безуспешно пытались понять ученые всех времен до Ньютона. Но мы получили новый термин – «ускорение». Сам Ньютон не пользовался этим термином в формулировке своего закона, тем не менее нам так понятнее. Ускорение – это изменение скорости во времени как по величине, так и по направлению. Планеты, движущиеся в космическом вакууме по окружности, например, изменяют свою скорость только по направлению. Пуля в стволе ружья меняет скорость по величине. И в результате того и другого мы получаем ускорение. А виновником ускорения является сила.

Представим себе падение тела на Землю с большой высоты. Пока расстояние до Земли велико, сила притяжения мала и тело ускоряется слабо. Но тем не менее движется к Земле ускоренно. У поверхности Земли ускорение достигает так называемого ускорения свободного падения – 9,81 м/с2, и тело падает на Землю. А что если в этом месте будет бездонный колодец до другой стороны Земли, ну, допустим, до Америки? Что, гравитация и ускорение будут возрастать или убывать в этом колодце, и как поведет себя падающее тело?

Ученые определили, что если бы Земля была полой, ну как мяч, например, и вся масса ее была бы заключена в оболочке, то, оказавшись внутри ее, тело мгновенно стало бы невесомым (рис. 29). То есть гравитация, конечно же, не исчезла бы, но тело притягивалось бы во все стороны одинаково, и равнодействующая всех сил притяжения была бы равна нулю. Вот и двигалось бы это тело от одного края такой Земли до другого совершенно равномерно и прямолинейно, т. е. по инерции. А выскочив с другой стороны, тело это, постепенно замедляясь, достигло бы той высоты, с которой падало, не будь, конечно, сопротивления воздуха.

Рис. 29. Полая Земля и люди внутри нее

Хорошо, но ведь Земля не полая, как же тогда? А тогда дело обстоит сложнее. Если бы земной шар был совершенно однороден по плотности, то сила гравитации и ускорение падения стали бы уменьшаться сразу после залета тела в колодец. Действительно, тело это стало бы частично притягиваться верхними слоями Земли вверх, что и ослабило бы суммарную силу притяжения. Но из-за того, что Земля очень плотная в центре, гравитационная сила и ускорение еще некоторое время будут возрастать и в колодце, но потом все-таки начнут падать и станут равными нулю в центре Земли. И что, падающее тело «зависнет» там? Нет, оно опять же по инерции проскочит этот центр и, замедляясь, прилетит к другому краю колодца, выскочит оттуда, достигнет высоты, с которой падало на землю и т. д. Но это если не будет сопротивления воздуха. С воздухом все будет иначе. Скорость тела будет все время падать, по сравнению с той, которая была бы в тех же точках, но без воздуха, а в конце концов тело остановится в центре Земли.

Интересно, что если бы бросать тело не с высоты, а с самого края бездонного колодца, то в центре Земли тело приобрело бы первую космическую скорость – 8 км/с, а весь путь туда и обратно занял бы всего 84 минуты и 24 секунды, т. е. около полутора часов (рис. 30).

Рис. 30. Движение тела в «бездонном» колодце

А если этот колодец рыть не вертикально вниз, а по хорде земного шара? Можно было бы прорыть так туннель между двумя большими городами и ездить без затрат энергии. При отправлении поезд как бы «проваливался» в туннель под большим углом, разгонялся к середине туннеля, а затем выскакивал бы на станцию назначения (рис. 31). Проект этот был описан в брошюре почти вековой давности с оригинальным названием: «Самокатная подземная железная дорога между С. – Петербургом и Москвой. Фантастический роман пока в трех главах, да и то неоконченных». Автор «романа» А. А. Родных считал, что, во-первых, такой туннель соединял бы города по кратчайшей линии, а во-вторых, поезд там якобы должен двигаться сам собой, под действием сил гравитации, как и вышеупомянутое тело в бездонном колодце. С той лишь разницей, что тут нужны колеса, опирающиеся на рельсы, так как составляющая сил гравитации, направленных к центру Земли, будет прижимать поезд к рельсам особенно сильно в центре туннеля.