Так межзвездная среда обогащается химическими элементами. Обилие тех или иных элементов определяется прежде всего вероятностью соответствующих ядерных реакций и наличием «сырья» для их протекания. В общем и целом наблюдается понятная закономерность: чем элемент тяжелее, тем меньше его во Вселенной, хотя и тут есть свои «пики» и «провалы». Например, в земной коре не так уж мало (относительно, конечно) урана-238, несмотря на то что этот изотоп нестабилен, с периодом полураспада 4,5 млрд лет, зато ничтожно мало (десятки миллиграммов) астата. Основную причину такой «несправедливости» следует искать в конкретных ядерных реакциях, идущих при взрывах сверхновых звезд.
Но общее количество тяжелых элементов, выбрасываемых при взрывах звезд, довольно велико, и эти элементы присутствуют в космосе преимущественно в виде пылинок, формирующихся по мере остывания расширяющегося облака продуктов взрыва. Так, например, известный радиоисточник Кассиопея А – самый мощный объект своего класса, являющийся остатком взрыва сверхновой, вспыхнувшей около 1680 года, содержит достаточно пыли для образования десяти тысяч таких планет, как Земля. И это еще самая скромная оценка. Выходит, что при взрыве звезды в космос было выброшено весьма значительное количество тяжелого вещества – не менее 3 % массы Солнца.
По современным представлениям, многократно подтвержденным наблюдениями, звезды рождаются из холодной газовопылевой материи. В очень молодой Галактике, лишенной тяжелых элементов, но с уже достаточно остывшей газовой средой, рождалось очень много массивных горячих звезд с ничтожным (по астрономическим меркам) сроком жизни. Взрываясь как сверхновые, эти звезды быстро обогатили межзвездную среду газом и пылью. Астрономам пока еще не удалось найти в Галактике звезду, полностью лишенную тяжелых элементов (а наличие их в звездных фотосферах запросто «ловится» спектроскопией). Пока что рекордсменом по химической бедности является одна слабая звездочка в галактическом гало – она в 100 тысяч раз беднее тяжелыми элементами, чем Солнце. Ясно, что говорить о наличии у этой звезды планет земного типа не приходится – им просто неоткуда взяться.
Отсюда понятно, что Солнце, коль скоро мы живем на поверхности его твердого спутника, никак не могло быть звездой «первого поколения» – оно образовалось значительно позже, когда обилие тяжелых элементов в газово-пылевой материи Галактики было уже близким к современному. Вообще считается, что любой атом Земли (и вашего тела, читатель) в прошлом трижды побывал в недрах звезды – в среднем, конечно. Иначе откуда бы взялось то обилие элементов, которое обеспечивает столь сложные химические процессы, какие протекают в живых организмах?
2. Рождение Солнца
Возраст Земли оценивается в 4,6 млрд лет. Поскольку считается (и не без оснований), что звезды и их планетные системы рождаются в рамках единого процесса, вряд ли Солнце намного старше Земли. Итак, к моменту рождения Солнца возраст Галактики уже превышал 7 млрд лет и диффузная материя в ней уже была обогащена тяжелыми элементами – почти до современного их количества. Среди тяжелых (я имею в виду: более тяжелых, чем водород и гелий) элементов важнейшее значение для звездообразования имеет углерод.
Именно его атомы имеют склонность слипаться в пылинки и, в частности, образовывать сложные структуры типа фуллеренов (последние найдены в космической пыли). Агрегат из сотни атомов – уже пылинка. Но для процесса звездообразования важно не то, что углерод в межзвездном облаке присутствует частично в виде пыли, а то, что он вообще там присутствует. Прочие атомы и молекулы (а в межзвездной материи спектроскопическими методами выявлено более 50 молекул, среди которых есть даже 13-атомная молекула цианодекапентина HC11N) не играют столь серьезной роли.