Выбрать главу

К исходу первой секунды жизни Вселенной ее температура упала «всего» до 10 млрд К. Это как раз характерная температура звездных недр. Что происходит в звездных недрах? Правильно, там идут ядерные реакции. Шли они и в очень молодой (но уже состоявшей из вещества) Вселенной. Но реакции реакциям рознь. Что же могло образоваться из первичного горячего и плотного скопища протонов и нейтронов за весьма ограниченное время?

Во-первых, дейтерий. Во-вторых, гелий-3 и гелий-4. И, наконец, литий. Последнего образовалось немного – не более 1 % от общей массы вещества во Вселенной. Дейтерия и двух изотопов гелия – несколько больше. Но все же основная часть протонов и нейтронов не успела прореагировать в отпущенный ей малый отрезок времени. Что до более тяжелых, чем литий, элементов, вроде бериллия или бора, то до образования сколько-нибудь заметного их количества дело просто не дошло – уже к двухсотой секунде от момента Большого взрыва расширяющаяся Вселенная успела остыть настолько, что ядерные реакции в ней прекратились.

Первые 50 тыс. лет во Вселенной доминировало излучение: плотность его энергии превышала плотность энергии вещества. Но так как первая зависит от размеров Вселенной в четвертой степени, а вторая – лишь в кубе, то рано или поздно должен был наступить момент доминирования вещества. Он и наступил – пока, впрочем, лишь для темной материи[5], не взаимодействующей с излучением. Казалось бы, что нам за дело до нее? Но именно темная материя, стекая в первичные, случайно возникшие и пока еще незначительные, гравитационные «ямы», начала «углублять» последние, подготавливая их для барионной материи.

Лишь спустя 300 тыс. лет после Большого взрыва излучение «отклеилось» от барионного вещества и получило возможность распространяться свободно. Температура Вселенной упала до 3000 К, и ядра получили возможность захватывать электроны. Барионная материя начала «сползать» в подготовленные темной материей гравитационные «ямы», подготавливая рождение крупномасштабной структуры Вселенной. Надо сказать, что каждая такая «яма» дала начало скоплению, а то и сверхскоплению галактик.

Отчего в молодой расширяющейся Вселенной возникли неоднородности, превратившиеся в гравитационные «ямы»? Вопрос, думается, лишен смысла. Гораздо труднее представить себе полностью однородную расширяющуюся Вселенную, лишенную каких бы то ни было, даже самых малых, флюктуаций плотности и температуры и сохраняющую однородность по мере расширения в бесконечность. Таких чудес в природе не бывает. А коль скоро флюктуации существуют, то в дальнейшем они будут только усугубляться. Температура же вещества будет все время падать и не станет препятствием к появлению в гравитационных «ямах» огромных облаков материи.

Так оно и происходило в действительности. Каждое такое облако имело определенную массу, температуру и некий интегральный момент вращения. В нем также возникали гравитационные «ямы» меньших размеров, куда стекало вещество. Со временем каждое облако делилось на меньшие облака, связанные друг с другом гравитационным взаимодействием, а те, в свою очередь, на еще меньшие. Так образовались скопления и меньшие, чем скопления, группы галактик вроде нашей Местной системы[6] и отдельные галактики.

Есть похожие галактики, но нет двух одинаковых. В 20-х годах XX века Эдвин Хаббл разделил галактики на три основных типа: спиральные (S), эллиптические (Е) и неправильные (Irr). В неправильные попали все галактики, которые не удалось причислить ни к спиральным, ни к эллиптическим.

Рассмотрим – в самом общем приближении – механизм формирования галактики. Мы увидим, что наша Галактика (часто называемая Млечным Путем) не зря относится к S-галактикам. Будь она Е-галактикой, в ней вряд ли могли бы образоваться в достаточном количестве планеты земной группы, а следовательно, вероятность возникновения жизни, тем более разумной, была бы малой, чтобы не сказать ничтожной.

Эллиптические галактики (рис. 1 на цветной вклейке) представляют собой более или менее сплюснутые сфероиды, состоящие из большого количества звезд – от десятков миллионов для карликовых Е-галактик до триллиона для сверхгигантских Е-галактик. Степень сжатия Е-галактик характеризуется цифровым индексом за буквой Е – от Е0 для сферических галактик до Е7 для сильно сжатых. Эллиптических галактик, более сжатых, чем Е7, не существует. Если галактика сжата сильнее, в ней уже образуются спиральные рукава, что выводит галактику из типа Е. Само собой, речь идет о реальном сжатии, а не о кажущемся, вызванном положением наблюдателя относительно галактики. В целом Е-галактики довольно невыразительны и в большинстве своем похожи друг на друга.

вернуться

5

По современным представлениям, около 20 % массы Вселенной заключено в темной материи, проявляющей себя только через гравитацию; обычная же материя составляет не более 4 % массы Вселенной. – Примеч. авт.

вернуться

6

Местной системой называется группа галактик на дальней периферии большого скопления галактик в созвездии Девы, включающая в себя нашу Галактику с ее карликовыми галактиками-спутниками, Туманность Андромеды М31 с ее спутниками, Туманность Треугольника М33, несколько карликовых эллиптических и неправильных галактик и несколько не связанных с галактиками шаровых скоплений – всего около 50 объектов. – Примеч. авт.