В качестве плотника, превратившегося в предпринимателя, Корнелл начал работать у Сэмюэля Морзе, чье имя живет в коде точек и тире, благодаря чему английский язык сократился до щелчков телеграфного ключа. Эти два события стали технологическими предшественниками сегодняшних нулей и единиц.
Морзе поручил Корнеллу построить первую правительственную телеграфную линию от Балтимора до Капитолия в Вашингтоне. Он, по-видимому, с самого начала предчувствовал, что принесут ему точки и тире. Когда 24 мая 1844 года линия была официально открыта, Морзе отправил по ней первое сообщение: «Чудны дела Твои, Господи!»
Часть II. Соотношения
7. Получая радость от Х
Итак, пора переходить от арифметики начальной школы к математике средних классов. На протяжении следующих десяти глав мы будем повторять алгебру, геометрию и тригонометрию. Не волнуйтесь, если вы их забыли, — на этот раз не будет никаких экзаменов. Вместо того чтобы беспокоиться о формальной стороне изучения алгебры и геометрии, позволим себе сосредоточиться на самых красивых, важных и далеко идущих идеях этих разделов математики. Например, алгебра может поразить вас головокружительным сочетанием символов, определений и методов, но, в конце концов, все это сведется лишь к двум вещам: нахождению решений x и работе с уравнениями.
Первое похоже на работу детектива. Вы ищете неизвестное число х, при этом вам дается несколько подсказок либо в виде уравнения наподобие 2x + 3 = 7, либо, что менее удобно, в виде запутанного словесного портрета x, то есть словесного описания задачи. В любом случае ваша цель — найти на основании полученных данных значение х.
Напротив, работа с уравнениями представляет собой смесь искусства и науки. Вместо того чтобы остановиться на конкретном значении х, вы подтасовываете и уплотняете соотношения, которые по-прежнему содержат изменяющиеся числа; они называются переменными и как раз и являются тем, что действительно отличает алгебру от арифметики. А уравнения, если можно так выразиться, — просто изящные модели самих чисел. Именно в них алгебра сродни искусству. Можно также сказать, что формулы выражают соотношения между числами в реальном мире, как это происходит в законах движения свободно падающих тел и характеристиках планетарных орбит либо у частот генотипов в популяции. Вот здесь алгебра сродни науке.
Такое определение двух основных функций алгебры не считается общепринятым (оно придумано мной и, как мне кажется, довольно правдиво). В следующей главе я больше расскажу о поиске решений x, а пока, чтобы пояснить мою мысль, сосредоточимся на уравнениях и формулах. Начнем с пары простых примеров.
Несколько лет назад моя дочь Джо поняла зависимость между числами, выражающими ее возраст и возраст ее старшей сестры Лии[30]. Она мне сказала: «Папа, смотри, всегда есть число между моим возрастом и возрастом Лии. Вот сейчас мне шесть лет, а Лии восемь, а семь находится посередине. И даже когда мы станем старше — мне исполнится двадцать, а ей двадцать два года, — посередине по-прежнему будет число!»
Рассуждения Джо — пример алгебраического подхода (хотя никто, кроме гордого отца, возможно, этого и не видит). Она подметила соотношение между двумя постоянно меняющимися переменными: своим возрастом, x, и возрастом Лии — y. Лия всегда будет на два года старше сестры: y = x + 2.
На языке алгебры такие задачи формулировать естественнее всего. Но потребуется небольшая практика, чтобы хорошо разобраться в этой науке, потому что существуют, как говорят французы, faux amis, то есть ложные друзья: пары слов, звучащие похоже и вроде бы означающие одно и то же, но на самом деле имеющие совершенно различные значения.
Предположим, что длина коридора равна y, если ее измерять в ярдах, и f, если мы ее измерим в футах. Составьте уравнение, описывающее отношение между y и f.
Мой друг Грант Виггинс, эксперт по вопросам образования, уже много лет предлагает такое задание студентам и университетским преподавателям. Основываясь на своем опыте, он утверждает, что студенты более чем в половине случаев выполняют его неправильно, даже если совсем недавно прошли и успешно сдали курс алгебры.